Vortex pinning vs superconducting wire network: origin of periodic oscillations induced by applied magnetic fields in superconducting films with arrays of nanomagnets

Autor: S. J. Carreira, Elvira M. Gonzalez, J. del Valle, José L. Prieto, C. E. Chiliotte, Alicia Gomez, J. L. Vicent, Ivan K. Schuller, Victoria Bekeris
Rok vydání: 2014
Předmět:
Materials science
Ciencias Físicas
FOS: Physical sciences
02 engineering and technology
engineering.material
01 natural sciences
Superconductivity (cond-mat.supr-con)
Magnetization
Electrical resistivity and conductivity
vortex pinning
Condensed Matter::Superconductivity
0103 physical sciences
Materials Chemistry
Electrical and Electronic Engineering
010306 general physics
Superconductivity
Telecomunicaciones
Condensed matter physics
Física de materiales
Condensed Matter - Superconductivity
Superconducting wire
Metals and Alloys
021001 nanoscience & nanotechnology
Condensed Matter Physics
Nanomagnet
Coherence length
Magnetic field
Vortex
Astronomía
Física del estado sólido
Ceramics and Composites
engineering
Electrónica
Little–Parks effect
0210 nano-technology
CIENCIAS NATURALES Y EXACTAS
nanoestructures
Zdroj: Superconductor Science and Technology, ISSN 0953-2048, 2014-06, Vol. 27, No. 6
Archivo Digital UPM
Universidad Politécnica de Madrid
E-Prints Complutense. Archivo Institucional de la UCM
instname
Repositorio Institucional del Instituto Madrileño de Estudios Avanzados en Nanociencia
E-Prints Complutense: Archivo Institucional de la UCM
Universidad Complutense de Madrid
Popis: Hybrid magnetic arrays embedded in superconducting films are ideal systems to study the competition between different physical (such as the coherence length) and structural length scales such as are available in artificially produced structures. This interplay leads to oscillation in many magnetically dependent superconducting properties such as the critical currents, resistivity and magnetization. These effects are generally analyzed using two distinct models based on vortex pinning or wire network. In this work, we show that for magnetic dot arrays, as opposed to antidot (i.e. holes) arrays, vortex pinning is the main mechanism for field induced oscillations in resistance R(H), critical current Ic(H), magnetization M(H) and ac-susceptibility χ ac(H) in a broad temperature range. Due to the coherence length divergence at Tc, a crossover to wire network behaviour is experimentally found. While pinning occurs in a wide temperature range up to Tc, wire network behaviour is only present in a very narrow temperature window close to Tc. In this temperature interval, contributions from both mechanisms are operational but can be experimentally distinguished. Fil: Gomez, A. Universidad Complutense de Madrid; España Fil: del Valle, J. Universidad Complutense de Madrid; España Fil: Gonzalez, E. M.. Universidad Complutense de Madrid; España. IMDEA. Madrid; España Fil: Chiliotte, Claudio Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina Fil: Carreira, Santiago José. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina Fil: Bekeris, Victoria Isabel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina Fil: Prieto, J. L.. Universidad Politécnica de Madrid; España Fil: Schuller, Ivan K.. University of California at San Diego; Estados Unidos Fil: Vicent, J. L.. IMDEA. Madrid; España. Universidad Complutense de Madrid; España
Databáze: OpenAIRE