Rapid assessment of shock in a nonhuman primate model of uncontrolled hemorrhage
Autor: | Forest R. Sheppard, Antoni R. Macko, James K. Aden, Randy F. Crossland, James E. Campbell, Alex Mitchell |
---|---|
Rok vydání: | 2016 |
Předmět: |
Male
Mean arterial pressure Resuscitation medicine.medical_treatment Vital signs Blood Pressure Shock Hemorrhagic 030204 cardiovascular system & hematology Critical Care and Intensive Care Medicine 03 medical and health sciences 0302 clinical medicine Heart Rate Heart rate Animals Medicine Arterial Pressure Monitoring Physiologic Vital Signs business.industry 030208 emergency & critical care medicine Carbon Dioxide Macaca mulatta Rapid assessment Oxygen Disease Models Animal Blood pressure Anesthesia Surgery Analysis of variance Hepatectomy business |
Zdroj: | Journal of Trauma and Acute Care Surgery. 80:610-616 |
ISSN: | 2163-0755 |
DOI: | 10.1097/ta.0000000000000963 |
Popis: | BACKGROUND Heart rate (HR), systolic blood pressure (SBP) and mean arterial pressure (MAP) are traditionally used to guide patient triage and resuscitation; however, they correlate poorly to shock severity. Therefore, improved acute diagnostic capabilities are needed. Here, we correlated acute alterations in tissue oxygen saturation (StO2) and end-tidal carbon dioxide (ETCO2) to mortality in a rhesus macaque model of uncontrolled hemorrhage. METHODS Uncontrolled hemorrhage was induced in anesthetized rhesus macaques by a laparoscopic 60% left-lobe hepatectomy (T = 0 minute). StO2, ETCO2, HR, as well as invasive SBP and MAP were continuously monitored through T = 480 minutes. At T = 120 minutes, bleeding was surgically controlled, and blood loss was quantified. Data analyses compared nonsurvivors (expired before T = 480 minutes, n = 5) with survivors (survived to T = 480 minutes, n = 11) using repeated-measures analysis of variance with Bonferroni correction. All p < 0.05 was considered statistically significant. Results were reported as mean ± SEM. RESULTS Baseline values were equivalent between groups for each parameter. In nonsurvivors versus survivors at T = 5 minutes, StO2 (55% ± 10% vs. 78% ± 3%, p = 0.02) and ETCO2 (15 ± 2 vs. 25 ± 2 mm Hg, p = 0.0005) were lower, while MAP (18 ± 1 vs. 23 ± 2 mm Hg, p = 0.2), SBP (26 ± 2 vs. 34 ± 3 mm Hg, p = 0.4), and HR (104 ± 13 vs. 105 ± 6 beats/min, p = 0.3) were similar. Association of values over T = 5-30 minutes to mortality demonstrated StO2 and ETCO2 equivalency with a significant group effect (p ≤ 0.009 for each parameter; R(2) = 0.92 and R(2) = 0.90, respectively). MAP and SBP associated with mortality later into the shock period (p < 0.04 for each parameter; R(2) = 0.91 and R(2) = 0.89, respectively), while HR yielded the lowest association (p = 0.8, R(2) = 0.83). CONCLUSION Acute alterations in StO2 and ETCO2 strongly associated with mortality and preceded those of traditional vital signs. The continuous, noninvasive aspects of Food and Drug Administration-approved StO2 and ETCO2 monitoring devices provide logistical benefits over other methodologies and thus warrant further investigation. |
Databáze: | OpenAIRE |
Externí odkaz: |