β-Cyclodextrin conjugated bifunctional isocyanate linker polymer for enhanced removal of 2,4-dinitrophenol from environmental waters
Autor: | Yih Hui Boon, Muggundha Raoov, Nur Nadhirah Mohamad Zain, Bahruddin Saad, Vuanghao Lim, Masrudin Md Yusoff, Mazidatulakmam Miskam, J.M. Anne, Mohamad Shariff Shahriman |
---|---|
Rok vydání: | 2018 |
Předmět: |
Thermogravimetric analysis
aliphatic linker 02 engineering and technology 010402 general chemistry 01 natural sciences chemistry.chemical_compound symbols.namesake Adsorption Freundlich equation Fourier transform infrared spectroscopy Bifunctional lcsh:Science chemistry.chemical_classification cross-linked polymer Multidisciplinary Langmuir adsorption model Polymer 021001 nanoscience & nanotechnology Isocyanate 0104 chemical sciences aromatic linker toxic contaminants chemistry Chemical engineering adsorption symbols lcsh:Q 0210 nano-technology |
Zdroj: | Royal Society Open Science, Vol 5, Iss 8 (2018) |
ISSN: | 2054-5703 |
Popis: | In this work, we reported the synthesis, characterization and adsorption study of two β-cyclodextrin (βCD) cross-linked polymers using aromatic linker 2,4-toluene diisocyanate (2,4-TDI) and aliphatic linker 1,6-hexamethylene diisocyanate (1,6-HDI) to form insoluble βCD-TDI and βCD-HDI. The adsorption of 2,4-dinitrophenol (DNP) on both polymers as an adsorbent was studied in batch adsorption experiments. Both polymers were well characterized using various tools that include Fourier transform infrared spectroscopy, thermogravimetric analysis, Brunauer–Emmett–Teller analysis and scanning electron microscopy, and the results obtained were compared with the native βCD. The adsorption isotherm of 2,4-DNP onto polymers was studied. It showed that the Freundlich isotherm is a better fit for βCD-TDI, while the Langmuir isotherm is a better fit for βCD-HMDI. The pseudo-second-order kinetic model represented the adsorption process for both of the polymers. The thermodynamic study showed that βCD-TDI polymer was more favourable towards 2,4-DNP when compared with βCD-HDI polymer. Under optimized conditions, both βCD polymers were successfully applied on various environmental water samples for the removal of 2,4-DNP. βCD-TDI polymer showed enhanced sorption capacity and higher removal efficiency (greater than 80%) than βCD-HDI (greater than 70%) towards 2,4-DNP. The mechanism involved was discussed, and the effects of cross-linkers on βCD open up new perspectives for the removal of toxic contaminants from a body of water. |
Databáze: | OpenAIRE |
Externí odkaz: |