Pioglitazone, a peroxisome proliferator-activated receptor gamma ligand, suppresses bleomycin-induced acute lung injury and fibrosis

Autor: Yasuhiro Aoki, Toshitaka Maeno, Nozomi Aoki, Masashi Arai, Manabu Ueno, Kana Aoyagi, Junichi Nakagawa, Fumiaki Aoki, Tatsuo Suga, Masahiko Kurabayashi, Yoshichika Sando, Yuji Shimizu
Rok vydání: 2008
Předmět:
Zdroj: Respiration; international review of thoracic diseases. 77(3)
ISSN: 1423-0356
Popis: Background: Peroxisome proliferator-activated receptor-γ (PPARγ) ligands have been shown to possess potent anti-inflammatory actions. Idiopathic interstitial pneumonia is defined as a specific form of chronic fibrosing lung disease characterized by progressive fibrosis which leads to deterioration and destruction of the lungs. Objective: To investigate whether the PPARγ ligand pioglitazone (PGZ) inhibited bleomycin (BLM)-induced acute lung injury and subsequent fibrosis. Methods: BLM was administered intratracheally to Wistar rats which were then treated with PGZ. Rat alveolar macrophages were stimulated with BLM for 6 h with or without PGZ pretreatment for 18 h. MRC-5 cells (human lung fibroblasts) were treated with PGZ for 18 h. After the treatment, the cells were stimulated with transforming growth factor- β (TGF-β) for 6 h. Results: PGZ inhibited BLM-induced acute lung injury and subsequent lung fibrosis when it was administered from day –7. PGZ treatment suppressed the accumulation of inflammatory cells in lungs and the concentration of tumor necrosis factor-α (TNF-α) in bronchoalveolar lavage fluid on day 3. PGZ also inhibited BLM-induced TNF-α production in alveolar macrophages. Furthermore, PGZ inhibited fibrotic changes and an increase in hydroxyproline content in lungs after instillation of BLM, even when PGZ was administered in the period from day 7 to day 28. Northern blot analyses revealed that PGZ inhibited TGF-β-induced procollagen I and connective tissue growth factor (CTGF) expression in MRC-5 cells. Conclusion: These results suggest that activation of PPARγ ameliorates BLM-induced acute inflammatory responses and fibrotic changes at least partly through suppression of TNF-α, procollagen I and CTGF expression. Beneficial effects of this PPARγ ligand on inflammatory and fibrotic processes open new perspectives for a potential role of PPARγ as a molecular target in fibroproliferative lung diseases.
Databáze: OpenAIRE