A Context-Oriented Framework for Computation Offloading in Vehicular Edge Computing using WAVE and 5G Networks
Autor: | Tiago Carneiro, Paulo Henrique Goncalves Rocha, Alisson Barbosa de Souza, José Neuman de Souza, Paulo A. L. Rego |
---|---|
Přispěvatelé: | Universidade Federal do Ceará = Federal University of Ceará (UFC), Optimisation de grande taille et calcul large échelle (BONUS), Inria Lille - Nord Europe, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), University of Luxembourg [Luxembourg] |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Vehicular ad hoc network
Computer science Reliability (computer networking) Distributed computing 010401 analytical chemistry Computation offloading Mobile computing 020206 networking & telecommunications Context (language use) Task assignment 02 engineering and technology 01 natural sciences 0104 chemical sciences Task offloading Task (computing) Server Automotive Engineering 0202 electrical engineering electronic engineering information engineering WAVE [INFO]Computer Science [cs] Enhanced Data Rates for GSM Evolution Electrical and Electronic Engineering Vehicular edge computing 5G |
Zdroj: | Vehicular Communications Vehicular Communications, 2021, ⟨10.1016/j.vehcom.2021.100389⟩ Vehicular Communications, Elsevier, 2021, ⟨10.1016/j.vehcom.2021.100389⟩ |
ISSN: | 2214-2096 2214-210X |
DOI: | 10.1016/j.vehcom.2021.100389⟩ |
Popis: | International audience; Despite technological advances, vehicles are still unable to meet the demands of some applications for massive computational resources in a feasible time. One way to deal with this situation is to integrate the computation offloading technique into a vehicular edge computing system. This integration allows application tasks to be executed on neighboring vehicles or edge servers coupled to base stations. However, the dynamic nature of vehicular networks, allied to over- loaded servers, can lead to failures and reduce the effectiveness of the offloading technique. Therefore, we propose a context-oriented framework for computation offloading to reduce the application execution time and maintain high reliabilityin vehicular edge computing. The framework modules perform computational resources discovery, contextual data gathering, computation tasks distribution, and failure recovery. Its main part is a task assignment algorithm that seeks the best possible server to execute each application task, using contextual information and WAVE and 5G networks. The results of extensive experiments in different vehicular environments show that our framework reduces up to 70.3% of total execution time compared to totally local execution and up to 42.9% compared to other literature approaches. Concerning reliability, our framework achieves to offload up to 89.4% of all tasks and needs to recover only 0.8% of them. Thus, our solution outperforms the totally local execution of the application and other existing computation offloading solutions. |
Databáze: | OpenAIRE |
Externí odkaz: |