Kadomtsev–Petviashvili Turning Points and CKP Hierarchy
Autor: | Igor Krichever, Anton Zabrodin |
---|---|
Rok vydání: | 2021 |
Předmět: |
Pure mathematics
Nonlinear Sciences - Exactly Solvable and Integrable Systems Hierarchy (mathematics) 010102 general mathematics Holomorphic function FOS: Physical sciences Statistical and Nonlinear Physics Mathematical Physics (math-ph) Fixed point Characterization (mathematics) 01 natural sciences symbols.namesake Identity (mathematics) Nonlinear Sciences::Exactly Solvable and Integrable Systems Flow (mathematics) 0103 physical sciences symbols 010307 mathematical physics Ramanujan tau function Exactly Solvable and Integrable Systems (nlin.SI) 0101 mathematics Locus (mathematics) Mathematical Physics Mathematics |
Zdroj: | Communications in Mathematical Physics. 386:1643-1683 |
ISSN: | 1432-0916 0010-3616 |
DOI: | 10.1007/s00220-021-04119-6 |
Popis: | A characterization of the Kadomtsev-Petviashvili hierarchy of type C (CKP) in terms of the KP tau-function is given. Namely, we prove that the CKP hierarchy can be identified with the restriction of odd times flows of the KP hierarchy on the locus of turning points of the second flow. The notion of CKP tau-function is clarified and connected with the KP tau function. Algebraic-geometrical solutions and in particular elliptic solutions are discussed in detail. The new identity for theta-functions of curves with holomorphic involution having fixed points is obtained. 44 pages, no figures |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |