Surface Effects in Ultra Thin Iron Oxide Hollow Nanoparticles: Exploring Magnetic Disorder at the Nanoscale

Autor: Gurvinder Singh, P. Anil Kumar, F. Sayed, R. Sayed Hassan, Elisabetta Agostinelli, Nader Yaacoub, Roland Mathieu, Davide Peddis, George C. Hadjipanayis, Y. Labaye, Jean-Marc Greneche
Přispěvatelé: Institut des Molécules et Matériaux du Mans (IMMM), Le Mans Université (UM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), CHU Pontchaillou [Rennes]
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Journal of physical chemistry. C 122 (2018): 7516–7524. doi:10.1021/acs.jpcc.8b00300
info:cnr-pdr/source/autori:F. Sayed (a,b); N. Yaacoub (a); Y. Labaye (a); R. Sayed Hassan (a,b); G. Singh (c); P. Anil Kumar (d); J. M. Greneche (a); R. Mathieu (e); G. C. Hadjipanayis (f); E. Agostinelli (g); and D. Peddis (g)/titolo:Surface Effects in Ultra Thin Iron Oxide Hollow Nanoparticles: Exploring Magnetic Disorder at the Nanoscale/doi:10.1021%2Facs.jpcc.8b00300/rivista:Journal of physical chemistry. C/anno:2018/pagina_da:7516/pagina_a:7524/intervallo_pagine:7516–7524/volume:122
Journal of Physical Chemistry C
Journal of Physical Chemistry C, American Chemical Society, 2018, 122 (13), pp.7516-7524. ⟨10.1021/acs.jpcc.8b00300⟩
ISSN: 1932-7447
1932-7455
DOI: 10.1021/acs.jpcc.8b00300
Popis: A detailed study of the structural and magnetic properties of polycrystalline hollow ?-Fe2O3 nanoparticles of ~9.4 nm size was performed. High-resolution transmission electron microscopy images confirmed the crystalline structure and the presence of a ultrathin shell thickness of ~1.4 nm, implying a very high surface/volume ratio. These hollow nanoparticles were investigated using zero-field and in-field 57Fe Mössbauer spectrometry. The zero-field hyperfine structure suggests some topological disorder, whereas the in-field one shows the presence of a comp magnetic structure that can be fairly described as two opposite pseudosperomagnetic sublattices attributed to octahedral and tetrahedral iron sites. Such an unusual feature is consistent with the presence of noncollinear spin structure originated from the increased surface due to the hollow morphology. Such a complex local spin structure evidenced from Mössbauer experiments was correlated with exchange bias coupling showing at low temperature by magnetization measurements. Monte Carlo simulations on a ferrimagnetic hollow nanoparticle unambiguously corroborate the critical role of the surface anisotropy on the noncollinearity of spin structure in our samples.
Databáze: OpenAIRE