Munc13-4 functions as a Ca2+sensor for homotypic secretory granule fusion to generate endosomal exocytic vacuoles

Autor: Sang Su Woo, Declan J. James, Thomas Martin
Rok vydání: 2017
Předmět:
Zdroj: Molecular Biology of the Cell
ISSN: 1939-4586
1059-1524
DOI: 10.1091/mbc.e16-08-0617
Popis: Munc13-4, a Ca2+-dependent SNARE/phospholipid-binding protein on secretory granules (SGs), functions as a Ca2+ sensor for SG exocytosis and SG-SG fusion. SG-SG fusion plus fusion with recycling endosomes generates large (>2.4 μm) Munc13-4+/Rab7+/Rab11+ exocytic vacuoles. The results provide insights into multigranular compound exocytosis.
Munc13-4 is a Ca2+-dependent SNARE (soluble N-ethylmaleimide–sensitive factor attachment protein receptor)- and phospholipid-binding protein that localizes to and primes secretory granules (SGs) for Ca2+-evoked secretion in various secretory cells. Studies in mast cell–like RBL-2H3 cells provide direct evidence that Munc13–4 with its two Ca2+-binding C2 domains functions as a Ca2+ sensor for SG exocytosis. Unexpectedly, Ca2+ stimulation also generated large (>2.4 μm in diameter) Munc13-4+/Rab7+/Rab11+ endosomal vacuoles. Vacuole generation involved the homotypic fusion of Munc13-4+/Rab7+ SGs, followed by a merge with Rab11+ endosomes, and depended on Ca2+ binding to Munc13-4. Munc13-4 promoted the Ca2+-stimulated fusion of VAMP8-containing liposomes with liposomes containing exocytic or endosomal Q-SNAREs and directly interacted with late endosomal SNARE complexes. Thus Munc13-4 is a tethering/priming factor and Ca2+ sensor for both heterotypic SG-plasma membrane and homotypic SG-SG fusion. Total internal reflection fluorescence microscopy imaging revealed that vacuoles were exocytic and mediated secretion of β-hexosaminidase and cytokines accompanied by Munc13-4 diffusion onto the plasma membrane. The results provide new molecular insights into the mechanism of multigranular compound exocytosis commonly observed in various secretory cells.
Databáze: OpenAIRE