Counting rational points on smooth cubic curves

Autor: Manh Hung Tran
Rok vydání: 2018
Předmět:
Zdroj: Journal of Number Theory. 189:138-146
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2017.12.001
Popis: We use a global version of Heath-Brown's $p-$adic determinant method developed by Salberger to give upper bounds for the number of rational points of height at most $B$ on non-singular cubic curves defined over $\mathbb{Q}$. The bounds are uniform in the sense that they only depend on the rank of the corresponding Jacobian.
Comment: 10 pages. Comments are welcome
Databáze: OpenAIRE