Stochastic nonlinear Schrödinger equations on tori

Autor: Kelvin Cheung, Razvan Mosincat
Rok vydání: 2018
Předmět:
Zdroj: Cheung, K & Mosincat, R 2019, ' Stochastic nonlinear Schrödinger equations on tori ', Stochastics and Partial Differential Equations: Analysis and Computations, vol. 7, no. 2, pp. 169-208 . https://doi.org/10.1007/s40072-018-0125-x
ISSN: 2194-041X
2194-0401
DOI: 10.1007/s40072-018-0125-x
Popis: We consider the stochastic nonlinear Schrodinger equations (SNLS) posed on d-dimensional tori with either additive or multiplicative stochastic forcing. In particular, for the one-dimensional cubic SNLS, we prove global well-posedness in $$L^2(\mathbb {T})$$ . As for other power-type nonlinearities, namely (i) (super)quintic when $$d = 1$$ and (ii) (super)cubic when $$d \ge 2$$ , we prove local well-posedness in all scaling-subcritical Sobolev spaces and global well-posedness in the energy space for the defocusing, energy-subcritical problems.
Databáze: OpenAIRE