High-Order AFEM for the Laplace–Beltrami Operator: Convergence Rates

Autor: J. Manuel Cascón, Ricardo H. Nochetto, Khamron Mekchay, Andrea Bonito, Pedro Morin
Rok vydání: 2016
Předmět:
Parametric surfaces
Matemáticas
Convergence rates
010103 numerical & computational mathematics
01 natural sciences
HIGHER ORDER
Mathematics::Numerical Analysis
Matemática Pura
purl.org/becyt/ford/1 [https]
Adaptive Finite Element methods
PARAMETRIC SURFACES
ADAPTIVE FINITE ELEMENT METHOD
Parametric surface
FOS: Mathematics
Applied mathematics
Degree of a polynomial
Mathematics - Numerical Analysis
0101 mathematics
High order
Contraction (operator theory)
Higher order
Mathematics
A posteriori error estimates
Applied Mathematics
Numerical analysis
purl.org/becyt/ford/1.1 [https]
Numerical Analysis (math.NA)
010101 applied mathematics
Computational Mathematics
CONVERGENCE RATES
Computational Theory and Mathematics
Laplace–Beltrami operator
Piecewise
LAPLACE–BELTRAMI OPERATOR
A POSTERIORI ERROR ESTIMATES
CIENCIAS NATURALES Y EXACTAS
Analysis
Zdroj: GREDOS. Repositorio Institucional de la Universidad de Salamanca
instname
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
ISSN: 1615-3383
1615-3375
DOI: 10.1007/s10208-016-9335-7
Popis: We present a new AFEM for the Laplace-Beltrami operator with arbitrary polynomial degree on parametric surfaces, which are globally $W^1_\infty$ and piecewise in a suitable Besov class embedded in $C^{1,\alpha}$ with $\alpha \in (0,1]$. The idea is to have the surface sufficiently well resolved in $W^1_\infty$ relative to the current resolution of the PDE in $H^1$. This gives rise to a conditional contraction property of the PDE module. We present a suitable approximation class and discuss its relation to Besov regularity of the surface, solution, and forcing. We prove optimal convergence rates for AFEM which are dictated by the worst decay rate of the surface error in $W^1_\infty$ and PDE error in $H^1$.
Comment: 51 pages, the published version contains an additional glossary
Databáze: OpenAIRE