Expression of EBNA-1 mRNA Is Regulated by Cell Cycle during Epstein-Barr Virus Type I Latency

Autor: Matthew G. Davenport, Joseph S. Pagano
Rok vydání: 1999
Předmět:
Zdroj: Journal of Virology. 73:3154-3161
ISSN: 1098-5514
0022-538X
DOI: 10.1128/jvi.73.4.3154-3161.1999
Popis: Expression of EBNA-1 protein is required for the establishment and maintenance of the Epstein-Barr virus (EBV) genome during latent infection. During type I latency, the Bam HI Q promoter (Qp) gives rise to EBNA-1 expression. The dominant regulatory mechanism for Qp appears to be mediated through the Q locus, located immediately downstream of the transcription start site. Binding of EBNA-1 to the Q locus represses Qp constitutive activity, and repression has been reported to be overcome by an E2F family member that binds to the Q locus and displaces EBNA-1 (N. S. Sung, J. Wilson, M. Davenport, N. D. Sista, and J. S. Pagano, Mol. Cell. Biol. 14:7144–7152, 1994). These data suggest that the final outcome of Qp activity is reciprocally controlled by EBNA-1 and E2F. Since E2F activity is cell cycle regulated, Qp activity and EBNA-1 expression are predicted to be regulated in a cell cycle-dependent manner. Proliferation of the type I latently infected cell line, Akata, was synchronized with the use of the G 2 /M blocking agent nocodazole. From 65 to 75% of cells could be made to peak in S phase without evidence of viral reactivation. Following release from G 2 /M block, EBNA-1 mRNA levels declined as the synchronized cells entered the G 1 phase of the cell cycle. As cells proceeded into S phase, EBNA-1 mRNA levels increased parallel to the peak in cell numbers in S phase. However, EBNA-1 protein levels showed no detectable change during the cell cycle, most likely due to the protein’s long half-life as estimated by inhibition of protein synthesis by cycloheximide. Finally, in Qp luciferase reporter assays, the activity of Qp was shown to be regulated by cell cycle and to be dependent on the E2F sites within the Q locus. These findings demonstrate that transcriptional activity of Qp is cell cycle regulated and indicated that E2F serves as the stimulus for this regulation.
Databáze: OpenAIRE