Distinguishing Androgen Receptor Agonists and Antagonists: Distinct Mechanisms of Activation by Medroxyprogesterone Acetate and Dihydrotestosterone

Autor: Kelce Wr, Kathy Bobseine, Elizabeth Langley, Choi iok Wong, Elizabeth M. Wilson, Jon A. Kemppainen
Rok vydání: 1999
Předmět:
Zdroj: Molecular Endocrinology. 13:440-454
ISSN: 1944-9917
0888-8809
DOI: 10.1210/mend.13.3.0255
Popis: Natural and pharmacological androgen receptor (AR) ligands were tested for their ability to induce the AR NH2-terminal and carboxyl-terminal (N/C) interaction in a two-hybrid protein assay to determine whether N/C complex formation distinguishes in vivo AR agonists from antagonists. High-affinity agonists such as dihydrotestosterone, mibolerone, testosterone, and methyltrienolone at concentrations between 0.1 and 1 nM induce the N/C interaction more than 40-fold. The lower affinity anabolic steroids, oxandrolone and fluoxymesterone, require concentrations of 10-100 nM for up to 23-fold induction of the N/C interaction. However no N/C interaction was detected in the presence of the antagonists, hydroxyflutamide, cyproterone acetate, or RU56187, at concentrations up to 1 microM, or with 1 microM estradiol, progesterone, or medroxyprogesterone acetate; each of these steroids at 1-500 nM inhibited the dihydrotestosterone-induced N/C interaction, with medroxyprogesterone acetate being the most effective. In transient and stable cotransfection assays using the mouse mammary tumor virus reporter vector, all ligands displayed concentration-dependent AR agonist activity that paralleled induction of the N/C interaction, with antagonists and weaker agonists failing to induce the N/C interaction. AR dimerization and DNA binding in mobility shift assays and AR stabilization reflected, but were not dependent on, the N/C interaction. The results indicate that the N/C interaction facilitates agonist potency at low physiological ligand concentrations as detected in transcription, dimerization/DNA binding, and stabilization assays. However the N/C interaction is not required for agonist activity at sufficiently high ligand concentrations, nor does its inhibition imply antagonist activity.
Databáze: OpenAIRE