The notions of closedness and D-connectedness in quantale-valued approach spaces
Autor: | Samed Özkan, Muhammad Qasim |
---|---|
Rok vydání: | 2020 |
Předmět: |
topological category
separation Pure mathematics Social connectedness lcsh:Mathematics Applied Mathematics Quantale $mathcal{l}$-gauge space Gauge (firearms) Characterization (mathematics) lcsh:QA1-939 Computational Mathematics closedness d-connectedness $mathcal{l}$-approach distance space Discrete Mathematics and Combinatorics Point (geometry) Analysis Mathematics |
Zdroj: | Categories and General Algebraic Structures with Applications, Vol 12, Iss 1, Pp 149-173 (2020) |
ISSN: | 2345-5861 2345-5853 |
DOI: | 10.29252/cgasa.12.1.149 |
Popis: | In this paper, we characterize local $T_{0}$ and $T_{1}$ quantale-valued gauge spaces, show how these concepts are related to each other and apply them to $mathcal{L}$-approach distance spaces and $mathcal{L}$-approach system spaces. Furthermore, we give the characterization of a closed point and $D$-connectedness in quantale-valued gauge spaces. Finally, we compare all these concepts to each other. |
Databáze: | OpenAIRE |
Externí odkaz: |