Kernel regression, minimax rates and effective dimensionality: Beyond the regular case

Autor: Gilles Blanchard, Nicole Mücke
Přispěvatelé: Institute of Mathematics, University of Potsdam, Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques d'Orsay (LMO), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Understanding the Shape of Data (DATASHAPE), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria), Institut für Mathematik [Potsdam], Universität Potsdam, Technische Universität Berlin (TU)
Rok vydání: 2020
Předmět:
Zdroj: Analysis and Applications
Analysis and Applications, World Scientific Publishing, 2020, 18 (4), pp.683-696. ⟨10.1142/S0219530519500258⟩
Analysis and Applications, World Scientific Publishing, 2020, 18 (04), pp.683-696. ⟨10.1142/S0219530519500258⟩
ISSN: 1793-6861
0219-5305
DOI: 10.1142/s0219530519500258
Popis: International audience; We investigate if kernel regularization methods can achieve minimax convergence rates over a source condition regularity assumption for the target function. These questions have been considered in past literature, but only under specific assumptions about the decay, typically polynomial, of the spectrum of the the kernel mapping covariance operator. In the perspective of distribution-free results, we investigate this issue under much weaker assumption on the eigenvalue decay, allowing for more complex behavior that can reflect different structure of the data at different scales.
Databáze: OpenAIRE