Espaces de Banach-Colmez et faisceaux coh\'erents sur la courbe de Fargues-Fontaine
Autor: | Arthur-César Le Bras |
---|---|
Přispěvatelé: | Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Nord |
Jazyk: | francouzština |
Rok vydání: | 2018 |
Předmět: |
Pure mathematics
Derived category 14G22 Mathematics - Number Theory General Mathematics Mathematics::Number Theory 010102 general mathematics perfectoid spaces Banach-Colmez spaces 01 natural sciences Cohomology 14F30 Coherent sheaf Fargues-Fontaine curve Mathematics - Algebraic Geometry Mathematics::Category Theory 0103 physical sciences Affine space 010307 mathematical physics Abelian category p-adic Hodge theory 0101 mathematics proétale cohomology [MATH]Mathematics [math] Mathematics |
Zdroj: | Duke Mathematical Journal Duke Mathematical Journal, Duke University Press, 2018, ⟨10.1215/00127094-2018-0034⟩ Duke Math. J. 167, no. 18 (2018), 3455-3532 |
ISSN: | 0012-7094 |
DOI: | 10.1215/00127094-2018-0034⟩ |
Popis: | We give a new definition, simpler but equivalent, of the abelian category of Banach-Colmez spaces introduced by Colmez, and we explain the precise relationship with the category of coherent sheaves on the Fargues-Fontaine curve. One goes from one category to the other by changing the t-structure on the derived category. Along the way, we obtain a description of the pro-\'etale cohomology of the open disk and the affine space, of independent interest. Comment: In French, comments welcome ! |
Databáze: | OpenAIRE |
Externí odkaz: |