Ferromagnetic kinetic exchange interaction in magnetic insulators

Autor: Dan Liu, Veacheslav Vieru, Zhishuo Huang, Akseli Mansikkamäki, Liviu F. Chibotaru, Naoya Iwahara
Přispěvatelé: RS: FSE MSP, Maastricht Science Programme
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Work (thermodynamics)
magneettiset ominaisuudet
Materials science
electronic-structure
Physics
Multidisciplinary

FOS: Physical sciences
magnetic coupling
elektronit
magneettikentät
Kinetic energy
teoriat
ORBITAL PHYSICS
Condensed Matter - Strongly Correlated Electrons
Condensed Matter::Materials Science
ANTIFERROMAGNETISM
HUBBARD-MODEL
Physics - Chemical Physics
SUPEREXCHANGE INTERACTIONS
density functional theory
Chemical Physics (physics.chem-ph)
Condensed Matter - Materials Science
complexes
Science & Technology
Strongly Correlated Electrons (cond-mat.str-el)
Condensed matter physics
CRYSTAL
magnetic insulators
Physics
SUPERCONDUCTIVITY
Exchange interaction
Materials Science (cond-mat.mtrl-sci)
transition
ORDER
hubbard-model
superexchange interactions
Wannier function methods
ELECTRONIC-STRUCTURE
Ferromagnetism
Physical Sciences
Condensed Matter::Strongly Correlated Electrons
COMPLEXES
TRANSITION
Zdroj: Physical Review Research, 2(3):033430. American Physical Society
ISSN: 2643-1564
Popis: The superexchange theory predicts dominant antiferromagnetic kinetic interaction when the orbitals accommodating magnetic electrons are covalently bonded through diamagnetic bridging atoms/groups. Here we show that explicit consideration of magnetic and (leading) bridging orbitals, together with the electron transfer between the former, reveals a strong ferromagnetic kinetic exchange contribution. First principle calculations show that it is comparable in strength with antiferromagnetic superexchange in a number of magnetic materials with diamagnetic metal bridges. In particular, it is responsible for a very large ferromagnetic coupling ($-10$ meV) between the iron ions in a Fe$^{3+}$-Co$^{3+}$-Fe$^{3+}$ complex.
Comment: Main text: 13 pages, 8 figures
Databáze: OpenAIRE