On the evolutionary weighting of neighbours and features in the k-nearest neighbour rule

Autor: Jorge García-Gutiérrez, José C. Riquelme-Santos, Daniel Mateos-García
Přispěvatelé: Universidad de Sevilla. Departamento de Lenguajes y Sistemas Informáticos, Universidad de Sevilla. TIC-254: Data Science and Big Data Lab
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: idUS. Depósito de Investigación de la Universidad de Sevilla
instname
Popis: This paper presents an evolutionary method for modifying the behaviour of the k-Nearest-Neighbour clas sifier (kNN) called Simultaneous Weighting of Attributes and Neighbours (SWAN). Unlike other weighting methods, SWAN presents the ability of adjusting the contribution of the neighbours and the significance of the features of the data. The optimization process focuses on the search of two real-valued vectors. One of them represents the votes of neighbours, and the other one represents the weight of each feature. The synergy between the two sets of weights found in the optimization process helps to improve significantly, the classification accuracy. The results on 35 datasets from the UCI repository suggest that SWAN statistically outperforms the other weighted kNN methods
Databáze: OpenAIRE