Galactic Token Sliding
Autor: | Bartier, Valentin, Bousquet, Nicolas, Mouawad, Amer E. |
---|---|
Přispěvatelé: | Modèles de calcul, Complexité, Combinatoire (MC2), Laboratoire de l'Informatique du Parallélisme (LIP), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Graphes, AlgOrithmes et AppLications (GOAL), Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Department of Computer Science and Mathematics [Lebanese American University] (CSM/SAS/LAU), Lebanese American University (LAU), ANR-18-CE40-0032,GrR,Reconfiguration de Graphes(2018) |
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: |
FOS: Computer and information sciences
History Polymers and Plastics General Computer Science Discrete Mathematics (cs.DM) Computer Networks and Communications [INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS] Computational Complexity (cs.CC) Industrial and Manufacturing Engineering Theoretical Computer Science Theory of computation → Fixed parameter tractability Computer Science - Data Structures and Algorithms FOS: Mathematics Mathematics - Combinatorics Data Structures and Algorithms (cs.DS) Business and International Management parameterized complexity Theory of computation → W hierarchy reconfiguration galactic reconfiguration Applied Mathematics token sliding Computer Science - Computational Complexity independent set Computational Theory and Mathematics Combinatorics (math.CO) sparse graphs MathematicsofComputing_DISCRETEMATHEMATICS Computer Science - Discrete Mathematics |
Zdroj: | European Symposium on Algorithms European Symposium on Algorithms, Sep 2022, Potsdam, Germany. ⟨10.4230/LIPIcs.ESA.2022.15⟩ |
DOI: | 10.4230/LIPIcs.ESA.2022.15⟩ |
Popis: | Given a graph G and two independent sets I_s and I_t of size k, the Independent Set Reconfiguration problem asks whether there exists a sequence of independent sets (each of size k) I_s = I₀, I₁, I₂, …, I_𝓁 = I_t such that each independent set is obtained from the previous one using a so-called reconfiguration step. Viewing each independent set as a collection of k tokens placed on the vertices of a graph G, the two most studied reconfiguration steps are token jumping and token sliding. In the Token Jumping variant of the problem, a single step allows a token to jump from one vertex to any other vertex in the graph. In the Token Sliding variant, a token is only allowed to slide from a vertex to one of its neighbors. Like the Independent Set problem, both of the aforementioned problems are known to be W[1]-hard on general graphs (for parameter k). A very fruitful line of research [Bodlaender, 1988; Grohe et al., 2017; Telle and Villanger, 2019; Pilipczuk and Siebertz, 2021] has showed that the Independent Set problem becomes fixed-parameter tractable when restricted to sparse graph classes, such as planar, bounded treewidth, nowhere-dense, and all the way to biclique-free graphs. Over a series of papers, the same was shown to hold for the Token Jumping problem [Ito et al., 2014; Lokshtanov et al., 2018; Siebertz, 2018; Bousquet et al., 2017]. As for the Token Sliding problem, which is mentioned in most of these papers, almost nothing is known beyond the fact that the problem is polynomial-time solvable on trees [Demaine et al., 2015] and interval graphs [Marthe Bonamy and Nicolas Bousquet, 2017]. We remedy this situation by introducing a new model for the reconfiguration of independent sets, which we call galactic reconfiguration. Using this new model, we show that (standard) Token Sliding is fixed-parameter tractable on graphs of bounded degree, planar graphs, and chordal graphs of bounded clique number. We believe that the galactic reconfiguration model is of independent interest and could potentially help in resolving the remaining open questions concerning the (parameterized) complexity of Token Sliding. LIPIcs, Vol. 244, 30th Annual European Symposium on Algorithms (ESA 2022), pages 15:1-15:14 |
Databáze: | OpenAIRE |
Externí odkaz: |