The Complexity of Languages Resulting from the Concatenation Operation

Autor: Alexander Szabari, Galina Jirásková, Juraj Šebej
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Descriptional Complexity of Formal Systems ISBN: 9783319411132
DCFS
DOI: 10.25596/jalc-2017-123
Popis: We prove that for all $m,n,$ and $\alpha$ with $1 \le \alpha \le f(m,n)$, where $f(m,n)$ is the state complexity of the concatenation operation, there exist a minimal $m$-state deterministic finite automaton $A$ and a minimal $n$-state deterministic finite automaton $B$, both defined over an alphabet $\Sigma$ with $|\Sigma|\le 2n+4$, such that the minimal deterministic finite automaton for the language $L(A)L(B)$ has exactly $\alpha$ states. This improves a similar result in the literature that uses an exponential alphabet.
Journal of Automata, Languages and Combinatorics, Volume 22, Numbers 1-3, 2017, 123-143
Databáze: OpenAIRE