Revisiting Bayesian Optimization in the light of the COCO benchmark
Autor: | Victor Picheny, Rodolphe Le Riche |
---|---|
Přispěvatelé: | Centre National de la Recherche Scientifique (CNRS), Institut Henri Fayol (FAYOL-ENSMSE), École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Département Génie mathématique et industriel (FAYOL-ENSMSE), Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Institut Henri Fayol, Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (LIMOS), Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Institut national polytechnique Clermont Auvergne (INP Clermont Auvergne), Université Clermont Auvergne (UCA)-Université Clermont Auvergne (UCA), Institut Mines-Télécom [Paris] (IMT), Université Clermont Auvergne (UCA), Secondmind, Ecole Nationale Supérieure des Mines de St Etienne-Institut Henri Fayol, Ecole Nationale Supérieure des Mines de St Etienne-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Institut national polytechnique Clermont Auvergne (INP Clermont Auvergne) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
FOS: Computer and information sciences
Mathematical optimization Control and Optimization Computer science 0211 other engineering and technologies Machine Learning (stat.ML) 02 engineering and technology Statistics - Computation symbols.namesake Statistics - Machine Learning 0202 electrical engineering electronic engineering information engineering Code (cryptography) FOS: Mathematics Optimization algorithm benchmark Global optimization Gaussian process Mathematics - Optimization and Control Computation (stat.CO) Bayesian optimization 021103 operations research global optimization [INFO.INFO-CE]Computer Science [cs]/Computational Engineering Finance and Science [cs.CE] Expensive function optimization Function (mathematics) Computer Graphics and Computer-Aided Design [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation Computer Science Applications [SPI.MECA.GEME]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanical engineering [physics.class-ph] Control and Systems Engineering Optimization and Control (math.OC) Kernel (statistics) symbols Benchmark (computing) 020201 artificial intelligence & image processing [MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] Engineering design process Software |
Zdroj: | Structural and Multidisciplinary Optimization Structural and Multidisciplinary Optimization, 2021, ⟨10.1007/s00158-021-02977-1⟩ Structural and Multidisciplinary Optimization, Springer Verlag (Germany), 2021, ⟨10.1007/s00158-021-02977-1⟩ |
ISSN: | 1615-147X 1615-1488 |
Popis: | International audience; It is commonly believed that Bayesian optimization (BO) algorithms are highly efficient for optimizing numerically costly functions. However, BO is not often compared to widely different alternatives, and is mostly tested on narrow sets of problems (multimodal, low-dimensional functions), which makes it difficult to assess where (or if) they actually achieve state-of-the-art performance. Moreover, several aspects in the design of these algorithms vary across implementations without a clear recommendation emerging from current practices, and many of these design choices are not substantiated by authoritative test campaigns. This article reports a large investigation about the effects on the performance of (Gaussian process based) BO of common and less common design choices. The experiments are carried out with the established COCO (COmparing Continuous Optimizers) software. It is found that a small initial budget, a quadratic trend, high-quality optimization of the acquisition criterion bring consistent progress. Using the GP mean as an occasional acquisition contributes to a negligible additional improvement. Warping degrades performance. The Mat\'ern 5/2 kernel is a good default but it may be surpassed by the exponential kernel on irregular functions. Overall, the best EGO variants are competitive or improve over state-of-the-art algorithms in dimensions less or equal to 5 for multimodal functions. The code developed for this study makes the new version (v2.1.1) of the R package DiceOptim available on CRAN. The structure of the experiments by function groups allows to define priorities for future research on Bayesian optimization. |
Databáze: | OpenAIRE |
Externí odkaz: |