Biomechanical Comparison of External Fixation and Double Plating for Stabilization of a Canine Cadaveric Supracondylar Humeral Fracture Gap Model
Autor: | Robert W. Wills, Sarah Castaldo, Jason A. Syrcle, S. H. Elder |
---|---|
Rok vydání: | 2020 |
Předmět: |
Humeral Fractures
External Fixators 040301 veterinary sciences medicine.medical_treatment law.invention 0403 veterinary science Intramedullary rod 03 medical and health sciences External fixation Fixation (surgical) Fracture Fixation Internal 0302 clinical medicine Dogs law Fracture Fixation medicine Foramen Cadaver Animals Dog Diseases Ostectomy Orthodontics 030222 orthopedics General Veterinary business.industry Stiffness 04 agricultural and veterinary sciences Biomechanical Phenomena Double plating Animal Science and Zoology medicine.symptom Cadaveric spasm business Bone Plates |
Zdroj: | Veterinary and comparative orthopaedics and traumatology : V.C.O.T. 34(3) |
ISSN: | 2567-6911 |
Popis: | Objective Successful stabilization of comminuted supracondylar humeral fractures is challenging, and biomechanical studies are scarce. This study compares double-plate (DB-PLATE) and linear external fixator with an intramedullary pin tie-in (ESF-IMP) fixation techniques in a cadaveric gap model. The hypothesis was the DB-PLATE construct would be stiffer, stronger and more resistant to repeated loading than the ESF-IMP construct in both cyclic and load-to-failure axial compression testing. Study Design A 2 cm ostectomy was performed on 10 pairs of canine cadaveric humeri proximal to the supratrochlear foramen. Stabilization was with DB-PLATE (n = 10) or ESF-IMP (n = 10). Cyclic testing was performed by applying a 200 N load at 2 Hz for 63,000 cycles. Axial compressive load to failure testing followed. Data analysed included dynamic stiffness, stiffness and yield load. Results No constructs failed during cyclic testing or lost stiffness over time. Mean dynamic stiffness over the final 100 cycles was greater for DB-PLATE compared with ESF-IMP. Mean stiffness of DB-PLATE in load-to-failure testing was not different than ESF-IMP. Yield load of DB-PLATE was higher than ESF-IMP. Conclusion Both DB-PLATE and ESF-IMP survived cyclic testing with no change in dynamic stiffness. DB-PLATE was stronger than ESF-IMP in load-to-failure testing, which may make this construct preferable when prolonged healing or poor patient compliance is anticipated. Results suggest that either method may be appropriate for fixation of comminuted supracondylar humeral fractures. |
Databáze: | OpenAIRE |
Externí odkaz: |