Khovanov Homology of Three-Strand Braid Links
Autor: | Dishya Arshad, Abdul Rauf Nizami, Mobeen Munir, Zaffar Iqbal, Young Chel Kwun, Shin Min Kang |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Khovanov homology
Polynomial Physics and Astronomy (miscellaneous) General Mathematics Jones polynomial 02 engineering and technology 01 natural sciences Mathematics::Algebraic Topology Combinatorics symbols.namesake Chain (algebraic topology) Mathematics::K-Theory and Homology Euler characteristic Mathematics::Category Theory 0202 electrical engineering electronic engineering information engineering Computer Science (miscellaneous) Braid 0101 mathematics braid link Link (knot theory) Mathematics::Symplectic Geometry Mathematics Homotopy lcsh:Mathematics 010102 general mathematics 020206 networking & telecommunications lcsh:QA1-939 Mathematics::Geometric Topology Chemistry (miscellaneous) symbols |
Zdroj: | Symmetry Volume 10 Issue 12 Symmetry, Vol 10, Iss 12, p 720 (2018) |
ISSN: | 2073-8994 |
DOI: | 10.3390/sym10120720 |
Popis: | Khovanov homology is a categorication of the Jones polynomial. It consists of graded chain complexes which, up to chain homotopy, are link invariants, and whose graded Euler characteristic is equal to the Jones polynomial of the link. In this article we give some Khovanov homology groups of 3-strand braid links &Delta 2 k + 1 = x 1 2 k + 2 x 2 x 1 2 x 2 2 x 1 2 ⋯ x 2 2 x 1 2 x 1 2 , &Delta 2 k + 1 x 2 , and &Delta 2 k + 1 x 1 , where &Delta is the Garside element x 1 x 2 x 1 , and which are three out of all six classes of the general braid x 1 x 2 x 1 x 2 ⋯ with n factors. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |