Khovanov Homology of Three-Strand Braid Links

Autor: Dishya Arshad, Abdul Rauf Nizami, Mobeen Munir, Zaffar Iqbal, Young Chel Kwun, Shin Min Kang
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Symmetry
Volume 10
Issue 12
Symmetry, Vol 10, Iss 12, p 720 (2018)
ISSN: 2073-8994
DOI: 10.3390/sym10120720
Popis: Khovanov homology is a categorication of the Jones polynomial. It consists of graded chain complexes which, up to chain homotopy, are link invariants, and whose graded Euler characteristic is equal to the Jones polynomial of the link. In this article we give some Khovanov homology groups of 3-strand braid links &Delta
2 k + 1 = x 1 2 k + 2 x 2 x 1 2 x 2 2 x 1 2 ⋯ x 2 2 x 1 2 x 1 2 , &Delta
2 k + 1 x 2 , and &Delta
2 k + 1 x 1 , where &Delta
is the Garside element x 1 x 2 x 1 , and which are three out of all six classes of the general braid x 1 x 2 x 1 x 2 ⋯ with n factors.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje