Stability and stabilizability of mixed retarded-neutral type systems
Autor: | Grigory M. Sklyar, Pavel Yu. Barkhayev, Rabah Rabah |
---|---|
Přispěvatelé: | Institut de Recherche en Communications et en Cybernétique de Nantes (IRCCyN), Mines Nantes (Mines Nantes)-École Centrale de Nantes (ECN)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN)-PRES Université Nantes Angers Le Mans (UNAM)-Centre National de la Recherche Scientifique (CNRS), Institute of Mathematics, University of Szczecin, University of Szczecin, Department of Differential Equations and Control, Kharkov National University, Kharkov National University, Institute of Mathematics, Department of Differential Equations and Control, The work was partially supported by the Polish Ministry of Science and High Education grant No. N514 238438 and École Centrale de Nantes, France. |
Jazyk: | angličtina |
Rok vydání: | 2009 |
Předmět: |
0209 industrial biotechnology
Pure mathematics Control and Optimization Differential equation infinite dimensional systems [MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] Dynamical Systems (math.DS) 02 engineering and technology 01 natural sciences [SPI.AUTO]Engineering Sciences [physics]/Automatic 93C23 34K06 34K20 34K40 49K25 symbols.namesake 020901 industrial engineering & automation Retarded-neutral type systems Exponential stability FOS: Mathematics State space MSC. 93C23 34K06 34K20 34K40 49K25 Mathematics - Dynamical Systems 0101 mathematics Invariant (mathematics) Mathematics - Optimization and Control Eigenvalues and eigenvectors Mathematics Resolvent asymptotic non-exponential stability 010102 general mathematics Mathematical analysis Hilbert space 93C23 93D15 34K40 34K20 stabilizability Linear subspace Computational Mathematics Optimization and Control (math.OC) Control and Systems Engineering symbols [MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] |
Zdroj: | ESAIM: Control, Optimisation and Calculus of Variations ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, 2012, 18 (3), pp.656-692. ⟨10.1051/cocv/2011166⟩ |
ISSN: | 1292-8119 1262-3377 |
DOI: | 10.1051/cocv/2011166⟩ |
Popis: | We analyze the stability and stabilizability properties of mixed retarded-neutral type systems when the neutral term is allowed to be singular. Considering an operator model of the system in a Hilbert space we are interesting in the critical case when there exists a sequence of eigenvalues with real parts approaching to zero. In this case the exponential stability is not possible and we are studying the strong asymptotic stability property. The behavior of spectra of mixed retarded-neutral type systems does not allow to apply directly neither methods of retarded system nor the approach of neutral type systems for analysis of stability. In this paper two technics are combined to get the conditions of asymptotic non-exponential stability: the existence of a Riesz basis of invariant finite-dimensional subspaces and the boundedness of the resolvent in some subspaces of a special decomposition of the state space. For unstable systems the technics introduced allow to analyze the concept of regular strong stabilizability for mixed retarded-neutral type systems. The present paper extends the results by R. Rabah, G.M. Sklyar, A.V. Rezounenko on stability obtained in [J. Diff. Equat., 214(2005), No. 2, 391-428] and on stabilizability from [J. Diff. Equat., 245(2008), No. 3, 569-593]. 46 pages |
Databáze: | OpenAIRE |
Externí odkaz: |