Preparation and structural characterization of (Me(3)SiNSN)(2)Se, a new synthon for sulfur-selenium nitrides

Autor: Jari Konu, Jussi Valkonen, Katja Paananen, Tristram Chivers, Risto S. Laitinen, Arto Maaninen, Petri Ingman
Rok vydání: 2002
Předmět:
Zdroj: Inorganic chemistry. 41(6)
ISSN: 0020-1669
Popis: The reaction of (Me(3)SiN)(2)S with SeCl(2) (2:1 ratio) in CH(2)Cl(2) at -70 degrees C provides a route to the novel mixed selenium-sulfur-nitrogen compound (Me(3)SiNSN)(2)Se (1). Crystals of 1 are monoclinic and belong the space group P2(1)/c, with a = 7.236(1) A, b = 19.260(4) A, c = 11.436(2) A, beta = 92.05(3) degrees, V = 1592.7(5) A(3), Z = 4, and T = -155(2) degrees C. The NSNSeNSN chain in 1 consists of Se-N single bonds (1.844(3) A) and S=N double bonds (1.521(3)-1.548(3) A) with syn and anti geometry at the N=S=N units. The N-Se-N bond angle is 91.8(1) degrees. The EI mass spectrum shows a molecular ion with good agreement between the observed and calculated isotopic distributions. The (14)N NMR spectrum exhibits two resonances at -65 and -77 ppm. Both (13)C and (77)Se NMR spectra show single resonances at 0.83 and 1433 ppm, respectively. The reaction of 1 with an equimolar amount of SeCl(2) produces 1,5-Se(2)S(2)N(4) (2) in a good yield, and that of (Me(3)SiNSN)(2)S with SCl(2) affords S(4)N(4) (3), but the reactions of (Me(3)SiNSN)(2)Se with SCl(2) and (Me(3)SiNSN)(2)S with SeCl(2) result in the formation of a mixture of 2 and 3. A likely reaction pathway involves the intermediate formation of E(2)N(2) fragments (E = S, Se).
Databáze: OpenAIRE