Epigallocatechin-3-gallate induced primary cultures of rat hippocampal neurons death linked to calcium overload and oxidative stress

Autor: Tairan Xing, Ju-Tao Chen, Di-Yun Ruan, Mingliang Tang, Hui-Li Wang, Shu-Ting Yin, Hong-Min Deng
Rok vydání: 2009
Předmět:
Zdroj: Naunyn-Schmiedeberg's Archives of Pharmacology. 379:551-564
ISSN: 1432-1912
0028-1298
DOI: 10.1007/s00210-009-0401-4
Popis: Epigallocatechin-3-gallate (EGCG), a catechin polyphenols component, is the main ingredient of green tea extract. It has been reported that EGCG is a potent antioxidant and beneficial in oxidative stress-related diseases, but others and our previous study showed that EGCG has pro-oxidant effects at high concentration. Thus, in this study, we tried to examine the possible pathway of EGCG-induced cell death in cultures of rat hippocampal neurons. Our results showed that EGCG caused a rapid elevation of intracellular free calcium levels ([Ca2+]i) in a dose-dependent way. Exposure to EGCG dose- and time-dependently increased the production of reactive oxygen species (ROS) and reduced mitochondrial membrane potential (Δψ m) as well as the Bcl-2/Bax expression ratio. Importantly, acetoxymethyl ester of 5,5′-dimethyl-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid, ethylene glycol-bis-(2-aminoethyl)-N,N,N′,N′-tetraacetic acid, and vitamin E could attenuate EGCG-induced apoptotic responses, including ROS generation, mitochondrial dysfunction, and finally partially prevented EGCG-induced cell death. Furthermore, treatment of hippocampal neurons with EGCG resulted in an elevation of caspase-3 and caspase-9 activities with no significant accompaniment of lactate dehydrogenase release, which provided further evidence that apoptosis was the dominant mode of EGCG-induced cell death in cultures of hippocampal neurons. Taken together, these findings indicated that EGCG induced hippocampal neuron death through the mitochondrion-dependent pathway.
Databáze: OpenAIRE