Phase-Resolved Detection of Ultrabroadband THz Pulses inside a Scanning Tunneling Microscope Junction

Autor: Melanie Müller, Martin Wolf, Natalia Martín Sabanés, Tobias Kampfrath
Rok vydání: 2020
Předmět:
THz voltage sampling
Materials science
Terahertz radiation
FOS: Physical sciences
Applied Physics (physics.app-ph)
02 engineering and technology
01 natural sciences
Article
law.invention
010309 optics
law
Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
0103 physical sciences
Waveform
Electrical and Electronic Engineering
Common emitter
Condensed Matter - Mesoscale and Nanoscale Physics
Spintronics
business.industry
spintronic THz emitter
Physics - Applied Physics
021001 nanoscience & nanotechnology
Atomic and Molecular Physics
and Optics

broadband THz pulses
3. Good health
Electronic
Optical and Magnetic Materials

ultrafast photocurrents
Femtosecond
scanning tunneling microscopy
Optoelectronics
Scanning tunneling microscope
0210 nano-technology
business
Ultrashort pulse
tip antenna response
Biotechnology
Voltage
Zdroj: ACS Photonics
ISSN: 2330-4022
DOI: 10.1021/acsphotonics.0c00386
Popis: Coupling phase-stable single-cycle terahertz (THz) pulses to scanning tunneling microscope (STM) junctions enables spatio-temporal imaging with femtosecond temporal and \r{A}ngstrom spatial resolution. The time resolution achieved in such THz-gated STM is ultimately limited by the sub-cycle temporal variation of the tip-enhanced THz field acting as an ultrafast voltage pulse, and hence by the ability to feed high-frequency, broadband THz pulses into the junction. Here, we report on the coupling of ultrabroadband (1-30 THz) single-cycle THz pulses from a spintronic THz emitter(STE) into a metallic STM junction. We demonstrate broadband phase-resolved detection of the THz voltage transient directly in the STM junction via THz-field-induced modulation of ultrafast photocurrents. Comparison to the unperturbed far-field THz waveform reveals the antenna response of the STM tip. Despite tip-induced low-pass filtering, frequencies up to 15 THz can be detected in the tip-enhanced near-field, resulting in THz transients with a half-cycle period of 115 fs. We further demonstrate simple polarity control of the THz bias via the STE magnetization, and show that up to 2 V THz bias at 1 MHz repetition rate can be achieved in the current setup. Finally, we find a nearly constant THz voltage and waveform over a wide range of tip-sample distances, which by comparison to numerical simulations confirms the quasi-static nature of the THz pulses. Our results demonstrate the suitability of spintronic THz emitters for ultrafast THz-STM with unprecedented bandwidth of the THz bias, and provide insight into the femtosecond response of defined nanoscale junctions.
Comment: 5 figures, supporting information available
Databáze: OpenAIRE