Fabrication of flexible polymer–GaN core–shell nanofibers by the combination of electrospinning and hollow cathode plasma-assisted atomic layer deposition
Autor: | Asli Celebioglu, Necmi Biyikli, Cagla Ozgit-Akgun, Seda Kizir, Ali Haider, Sesha Vempati, Fatma Kayaci, Eda Goldenberg, Tamer Uyar |
---|---|
Přispěvatelé: | Uyar, Tamer, Bıyıklı, Necmi |
Rok vydání: | 2015 |
Předmět: |
Low processing temperature
Cathodes Materials science Polymers X ray diffraction Processing temperature X ray photoelectron spectroscopy Nanofibers Pulsed laser deposition Average fiber diameters Nanotechnology Energy dispersive X ray analysis Processing X ray analysis Zinc sulfide Atomic layer deposition Electron diffraction X-ray photoelectron spectroscopy Optoelectronic applications Ceramic materials Electron microscopy Materials Chemistry Shells (structures) Ceramic Deposition Electrodes Polycrystalline wurtzite Wurtzite crystal structure Dynamic mechanical analysis Electrospinning Photoluminescence measurements Temperature Spinning (fibers) Gallium nitride General Chemistry Selected area electron diffraction Chemical engineering High performance material Nanofiber visual_art visual_art.visual_art_medium Selected area diffraction Layer (electronics) Transmission electron microscopy Electron sources |
Zdroj: | Journal of Materials Chemistry C |
ISSN: | 2050-7534 2050-7526 |
DOI: | 10.1039/c5tc00343a |
Popis: | Here we demonstrate the combination of electrospinning and hollow cathode plasma-assisted atomic layer deposition (HCPA-ALD) processes by fabricating flexible polymer-GaN organic-inorganic core-shell nanofibers at a processing temperature much lower than that needed for the preparation of conventional GaN ceramic nanofibers. Polymer-GaN organic-inorganic core-shell nanofibers fabricated by the HCPA-ALD of GaN on electrospun polymeric (nylon 6,6) nanofibers at 200 °C were characterized in detail using electron microscopy, energy dispersive X-ray analysis, selected area electron diffraction, X-ray diffraction, X-ray photoelectron spectroscopy, photoluminescence measurements, and dynamic mechanical analysis. Although transmission electron microscopy studies indicated that the process parameters should be further optimized for obtaining ultimate uniformity and conformality on these high surface area 3D substrates, the HCPA-ALD process resulted in a ∼28 nm thick polycrystalline wurtzite GaN layer on polymeric nanofibers of an average fiber diameter of ∼70 nm. Having a flexible polymeric core and low processing temperature, these core-shell semiconducting nanofibers might have the potential to substitute brittle ceramic GaN nanofibers, which have already been shown to be high performance materials for various electronic and optoelectronic applications. |
Databáze: | OpenAIRE |
Externí odkaz: |