Black-box Optimization Benchmarking of NIPOP-aCMA-ES and NBIPOP-aCMA-ES on the BBOB-2012 Noiseless Testbed
Autor: | Ilya Loshchilov, Marc Schoenauer, Michele Sebag |
---|---|
Přispěvatelé: | Machine Learning and Optimisation (TAO), Laboratoire de Recherche en Informatique (LRI), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), This work was partially funded by FUI of System@tic Paris-Region ICT cluster through contract DGT 117 407 {\em Complex Systems Design Lab} (CSDL)., Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Paris-Sud - Paris 11 (UP11)-Laboratoire de Recherche en Informatique (LRI), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec |
Jazyk: | angličtina |
Rok vydání: | 2012 |
Předmět: |
Benchmarking
021103 operations research evolution strategy self-adaptation 0211 other engineering and technologies 0202 electrical engineering electronic engineering information engineering 020201 artificial intelligence & image processing 02 engineering and technology CMA-ES black-box optimization restart strategies [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] |
Zdroj: | Workshop Proceedings of the {GECCO} Genetic and Evolutionary Computation Conference Workshop Proceedings of the {GECCO} Genetic and Evolutionary Computation Conference, Jul 2012, Philadelphia, United States Workshop Proceedings of the Genetic and Evolutionary Computation Conference, Jul 2012, Philadelphia, United States |
Popis: | International audience; In this paper, we study the performance of NIPOP-aCMA-ES and NBIPOP-aCMA-ES, recently proposed alternative restart strategies for CMA-ES. Both algorithms were tested using restarts till a total number of function evaluations of $10^6D$ was reached, where $D$ is the dimension of the function search space. We compared new strategies to CMA-ES with IPOP and BIPOP restart schemes, two algorithms with one of the best overall performance observed during the BBOB-2009 and BBOB-2010. We also present the first benchmarking of BIPOP-CMA-ES with the weighted active covariance matrix update (BIPOP-aCMA-ES). The comparison shows that NIPOP-aCMA-ES usually outperforms IPOP-aCMA-ES and has similar performance with BIPOP-aCMA-ES, using only the regime of increasing the population size. The second strategy, NBIPOP-aCMA-ES, outperforms BIPOP-aCMA-ES in dimension 40 on weakly structured multi-modal functions thanks to the adaptive allocation of computation budgets between the regimes of restarts. |
Databáze: | OpenAIRE |
Externí odkaz: |