Junctions between two-dimensional plasmonic waveguides in the presence of retardation
Autor: | Oleksiy Sydoruk, Simone Zonetti, S. Siaber |
---|---|
Přispěvatelé: | Engineering & Physical Science Research Council (E |
Rok vydání: | 2019 |
Předmět: |
Materials science
Science & Technology Terahertz radiation business.industry 0205 Optical Physics Physics::Optics plasmonic waveguides TERAHERTZ Optics waveguide junctions Atomic and Molecular Physics and Optics Electronic Optical and Magnetic Materials plasmon 0906 Electrical and Electronic Engineering Plasmonic waveguide Physical Sciences Physics::Atomic and Molecular Clusters two-dimensional materials business 0206 Quantum Physics Plasmon DISCONTINUITIES |
Popis: | Plasmons in two-dimensional waveguides are traditionally analysed within the electrostatic approximation, which assumes that the plasmon phase velocity is much smaller than the velocity of light. However, novel effects have recently been demonstrated for plasmons whose velocity is comparable to the velocity of light. In this retardation regime, electrostatic models are inaccurate. For a junction between two plasmonic waveguides, we present an analytical and a numerical model both valid in the retardation regime and compare them to an electrostatic model. We quantify the reflected and transmitted powers and the radiation loss in several scenarios. We found that power is radiated from a junction at the expense of the power of the reflected plasmon, but retardation has little effect on the phases of the reflected and transmitted plasmons. The radiation loss is typically below several percent when the plasmon velocities are five or more times below the light velocity. However, radiation still persists for slower plasmon velocities for a junction between a two-dimensional waveguide and a perfectly conducting sheet. As a result, retardation is expected to degrade the quality factors of plasmonic resonators without affecting their eigenfrequencies. |
Databáze: | OpenAIRE |
Externí odkaz: |