Computing the table of marks of a cyclic extension
Autor: | Goetz Pfeiffer, Liam Naughton |
---|---|
Přispěvatelé: | ~ |
Jazyk: | angličtina |
Rok vydání: | 2012 |
Předmět: |
Discrete mathematics
Algebra and Number Theory Composition series Applied Mathematics Computation 010102 general mathematics MathematicsofComputing_GENERAL Group Theory (math.GR) 010103 numerical & computational mathematics Extension (predicate logic) 01 natural sciences Combinatorics Computational Mathematics Mathematics::Group Theory Conjugacy class Solvable group FOS: Mathematics Table (database) SUBGROUPS 0101 mathematics Primary 20B40 Secondary 19A22 20D30 20D08 20D10 Mathematics - Group Theory GeneralLiterature_REFERENCE(e.g. dictionaries encyclopedias glossaries) Mathematics |
Popis: | The subgroup pattern of a finite groups $G$ is the table of marks of $G$ together with a list of representatives of the conjugacy classes of subgroups of $G$. In this article we present an algorithm for the computation of the subgroup pattern of a cyclic extension of $G$ from the subgroup pattern of $G$. Repeated application of this algorithm yields an algorithm for the computation of the table of marks of a solvable group $G$, along a composition series of $G$. Comment: 20 pages |
Databáze: | OpenAIRE |
Externí odkaz: |