Optimality conditions (In Pontryagin form)
Autor: | Marco Mazzola, Daniela Tonon, Teresa Scarinci, Andrea Boccia, Luong V. Nguyen, Cédric M. Campos, Francisco J. Silva, Maria Soledad Aronna, Michele Palladino |
---|---|
Přispěvatelé: | Fundacao Getulio Vargas [Rio de Janeiro] (FGV), CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Department of Electrical and Electronic Engineering [London] (DEEE), Imperial College London, Technische Universität Munchen - Université Technique de Munich [Munich, Allemagne] (TUM), Institut de Mathématiques de Jussieu (IMJ), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Universita degli Studi di Padova, Dipartimento di Matematica [Roma II] (DIPMAT), Università degli Studi di Roma Tor Vergata [Roma], Mathématiques & Sécurité de l'information (XLIM-MATHIS), XLIM (XLIM), Université de Limoges (UNILIM)-Centre National de la Recherche Scientifique (CNRS)-Université de Limoges (UNILIM)-Centre National de la Recherche Scientifique (CNRS), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Università degli Studi di Padova = University of Padua (Unipd) |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
0209 industrial biotechnology
Time delays 021103 operations research Partial differential equation 0211 other engineering and technologies Control variable 02 engineering and technology State (functional analysis) Optimal control Pontryagin's minimum principle 020901 industrial engineering & automation Applied mathematics [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] Affine transformation [MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] ComputingMilieux_MISCELLANEOUS Mathematics |
Zdroj: | Optimal Control: Novel Directions and Applications Optimal Control: Novel Directions and Applications, 2180, Springer, pp.1-125, 2017, Lectures Notes in Mathematics, ⟨10.1007/978-3-319-60771-9_1⟩ Optimal Control: Novel Directions and Applications ISBN: 9783319607702 |
Popis: | This chapter aims at being a friendly presentation of various results related to optimality conditions of Optimal Control problems. Different classes of systems are considered, such as equations with time delays and/or state constraints, dynamics affine with respect to the control variables, problems governed by partial differential equations and systems arising from Classical Mechanics, among others. |
Databáze: | OpenAIRE |
Externí odkaz: |