Novel Ternary Heterogeneous Reduction Graphene Oxide (RGO)/BiOCl/TiO2 Nanocomposites for Enhanced Adsorption and Visible-Light Induced Photocatalytic Activity toward Organic Contaminants

Autor: Xueying Xian, Xiangyi Dai, Huojiao Zhong, Qiongshan Zhang, Yong Li, Zhanxin Jing
Rok vydání: 2020
Předmět:
Zdroj: Materials
Volume 13
Issue 11
Materials, Vol 13, Iss 2529, p 2529 (2020)
ISSN: 1996-1944
DOI: 10.3390/ma13112529
Popis: Herein, we describe a simple and cost-effective design for the fabrication of a novel ternary RGO/BiOCl/TiO2 nanocomposites through a simple hydrothermal process. The prepared nanocomposites were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), X-ray diffraction (XRD), UV&ndash
vis diffuse reflectance spectroscopy (UV&ndash
vis DRS) and N2 adsorption&ndash
desorption analysis. Organic contaminants&mdash
such as methylene blue (MB), methyl orange (MO), rhodamine B (RhB) and amido black-10B (AB-10B)&mdash
were employed as the target pollutants to evaluate the adsorption capacity and photocatalytic activity of RGO/BiOCl/TiO2 nanocomposites. From experimental data, it was also found that the amount of TiO2 impressed the photocatalytic performance, and the nanocomposites with 10% of TiO2 showed the best photocatalytic activity. The improved photocatalytic performance may be mainly due to the narrow band gap, and the charge separation and migration of RGO. Moreover, good recyclability was obtained from RGO/BiOCl/TiO2 nanocomposites, and scavenger tests indicated that photogenerated holes were the main active species in the reaction system. Therefore, the prepared RGO/BiOCl/TiO2 nanocomposites have broad applications foreground in pollutants purification.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje