Multifunctional Mitochondrial Epac1 Controls Myocardial Cell Death

Autor: Jérôme Roy, Alexandre Lucas, Marion Laudette, Bijan Ghaleh, Olivier Lairez, Florence Tortosa, Caroline Conte, Yannis Sainte-Marie, Pierre Sicard, Malik Bisserier, Frank Lezoualc'h, Sandrine Pons, Sílvia Paula-Gomes, Loubina Fazal, Jeanne Mialet-Perez, Jérémy Fauconnier
Přispěvatelé: Physiologie & médecine expérimentale du Cœur et des Muscles [U 1046] (PhyMedExp), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM), MORNET, Dominique
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Male
0301 basic medicine
Programmed cell death
Physiology
[SDV]Life Sciences [q-bio]
Mitochondrion
Biology
Mitochondria
Heart

Mice
03 medical and health sciences
chemistry.chemical_compound
Membrane Microdomains
[SDV.MHEP.CSC]Life Sciences [q-bio]/Human health and pathology/Cardiology and cardiovascular system
Ca2+/calmodulin-dependent protein kinase
medicine
Animals
Guanine Nucleotide Exchange Factors
Humans
Myocytes
Cardiac

cyclic AMP
Cells
Cultured

ComputingMilieux_MISCELLANEOUS
Heart Failure
Mice
Knockout

reactive oxygen species
ischemia reperfusion injury
calcium
Cell Death
medicine.disease
Rats
[SDV.MHEP.CSC] Life Sciences [q-bio]/Human health and pathology/Cardiology and cardiovascular system
Cell biology
mitochondria
030104 developmental biology
Animals
Newborn

chemistry
Mitochondrial permeability transition pore
Second messenger system
Cardiology and Cardiovascular Medicine
VDAC1
Reperfusion injury
Nicotinamide adenine dinucleotide phosphate
Zdroj: Circulation Research
Circulation Research, American Heart Association, 2017, 120 (4), pp.645-657. ⟨10.1161/CIRCRESAHA.116.309859⟩
Circulation Research, 2017, 120 (4), pp.645-657. ⟨10.1161/CIRCRESAHA.116.309859⟩
ISSN: 0009-7330
1524-4571
Popis: Rationale: Although the second messenger cyclic AMP (cAMP) is physiologically beneficial in the heart, it largely contributes to cardiac disease progression when dysregulated. Current evidence suggests that cAMP is produced within mitochondria. However, mitochondrial cAMP signaling and its involvement in cardiac pathophysiology are far from being understood. Objective: To investigate the role of MitEpac1 (mitochondrial exchange protein directly activated by cAMP 1) in ischemia/reperfusion injury. Methods and Results: We show that Epac1 (exchange protein directly activated by cAMP 1) genetic ablation ( Epac1 −/− ) protects against experimental myocardial ischemia/reperfusion injury with reduced infarct size and cardiomyocyte apoptosis. As observed in vivo, Epac1 inhibition prevents hypoxia/reoxygenation–induced adult cardiomyocyte apoptosis. Interestingly, a deleted form of Epac1 in its mitochondrial-targeting sequence protects against hypoxia/reoxygenation–induced cell death. Mechanistically, Epac1 favors Ca 2+ exchange between the endoplasmic reticulum and the mitochondrion, by increasing interaction with a macromolecular complex composed of the VDAC1 (voltage-dependent anion channel 1), the GRP75 (chaperone glucose-regulated protein 75), and the IP3R1 (inositol-1,4,5-triphosphate receptor 1), leading to mitochondrial Ca 2+ overload and opening of the mitochondrial permeability transition pore. In addition, our findings demonstrate that MitEpac1 inhibits isocitrate dehydrogenase 2 via the mitochondrial recruitment of CaMKII (Ca 2+ /calmodulin-dependent protein kinase II), which decreases nicotinamide adenine dinucleotide phosphate hydrogen synthesis, thereby, reducing the antioxidant capabilities of the cardiomyocyte. Conclusions: Our results reveal the existence, within mitochondria, of different cAMP–Epac1 microdomains that control myocardial cell death. In addition, our findings suggest Epac1 as a promising target for the treatment of ischemia-induced myocardial damage.
Databáze: OpenAIRE