Wijsman asymptotic lacunary $$\mathcal {I}_2$$-invariant equivalence for double set sequences
Autor: | Uğur Ulusu, Erdinç Dündar, Nimet Pancaroğlu Akın |
---|---|
Přispěvatelé: | Cumhuriyet Meslek Yüksekokulu |
Rok vydání: | 2021 |
Předmět: |
asymptotic equivalence
Mathematics::Functional Analysis Pure mathematics Wijsman convergence invariant convergence Mathematics::Classical Analysis and ODEs Mathematics::General Topology Field (mathematics) double lacunary sequence I-convergence Theoretical Computer Science Set (abstract data type) double set sequences Computer Science::Symbolic Computation Geometry and Topology Invariant (mathematics) Lacunary function Equivalence (measure theory) Software Mathematics |
Zdroj: | Soft Computing. 25:13805-13811 |
ISSN: | 1433-7479 1432-7643 |
DOI: | 10.1007/s00500-021-06195-1 |
Popis: | In this study, for double set sequences, we present the notions of Wijsman asymptotic lacunary invariant equivalence, Wijsman asymptotic lacunary $$\mathcal {I}_2$$ -invariant equivalence and Wijsman asymptotic lacunary $$\mathcal {I}_2^{*}$$ -invariant equivalence. Also, we examine the relations between these notions and Wijsman asymptotic lacunary invariant statistical equivalence studied in this field before. |
Databáze: | OpenAIRE |
Externí odkaz: |