Towards Qualitative and Quantitative Data Integration Approach for Enhancing HCI Quality Evaluation

Autor: Ahlem Assila, Houcine Ezzedine, Káthia Marçal de Oliveira
Přispěvatelé: Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 (LAMIH), Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Centre National de la Recherche Scientifique (CNRS)-INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France), M. Kurosu
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Zdroj: Human-Computer Interaction. Theories, Methods, and Tools-16th International Conference, HCI International 2014
Human-Computer Interaction. Theories, Methods, and Tools-16th International Conference, HCI International 2014, Jun 2014, Crete, Greece. pp.469-480, ⟨10.1007/978-3-319-07233-3_43⟩
Lecture Notes in Computer Science ISBN: 9783319072326
HCI (1)
DOI: 10.1007/978-3-319-07233-3_43⟩
Popis: International audience; Over the two past decades, various HCI quality evaluation methods have been proposed. Each one has its own strengths and its own shortcomings. Different methods are combined to enhance the evaluation results. To obtain better coverage of design problems and to increase the system performance, subjective and objective methods can complement each other. However, the variability of these methods features poses a challenge to effectively integrate between them. The purpose of this paper is to enhance the evaluation of HCI quality by suggesting new approach intended for improving evaluation results. This method supports a mapping model between evaluation data. It aims to spe-cify new quality indicators that effectively integrate qualitative and quantitative data based on a set of pre-defined quality criteria. Qualitative (items) and quantitative data are respectively extracted from highly cited HCI quality questionnaires and from existing tools.
Databáze: OpenAIRE