Role of tetrachloro-1,4-benzoquinone reductase in phenylalanine hydroxylation system and pentachlorophenol degradation in Bacillus cereus AOA-CPS1

Autor: Ajit Kumar, Ademola O. Olaniran, Oladipupo A. Aregbesola, Mduduzi P. Mokoena
Rok vydání: 2020
Předmět:
Zdroj: International journal of biological macromolecules. 161
ISSN: 1879-0003
Popis: This study reports a ≅12.5 kDa protein tetrachloro-1,4-benzoquinone reductase (CpsD) from Bacillus cereus strain AOA-CPS1 (BcAOA). CpsD is purified to homogeneity with a total yield of 35% and specific activity of 160 U·mg−1 of protein. CpsD showed optimal activity at pH 7.5 and 40 °C. The enzyme was found to be functionally stable between pH 7.0–7.5 and temperature between 30 °C and 35 °C. CpsD activity was enhanced by Fe2+ and inhibited by sodium azide and SDS. CpsD followed Michaelis-Menten kinetic exhibiting an apparent vmax, Km, kcat and kcat/Km values of 0.071 μmol·s−1, 94 μmol, 0.029 s−1 and 3.13 × 10−4 s−1·μmol−1, respectively, for substrate tetrachloro-1,4-benzoquinone. The bioinformatics analysis indicated that CpsD belongs to the PCD/DCoH superfamily, with specific conserved protein domains of pterin-4α-carbinolamine dehydratase (PCD). This study proposed that CpsD catalysed the reduction of tetrachloro-1,4-benzoquinone to tetrachloro-p-hydroquinone and released the products found in phenylalanine hydroxylation system (PheOHS) via a Ping-Pong or atypical ternary mechanism; and regulate expression of phenylalanine 4-monooxygenase by blocking reverse flux in BcAOA PheOHS using a probable Yin-Yang mechanism. The study also concluded that CpsD may play a catalytic and regulatory role in BcAOA PheOHS and pentachlorophenol degradation pathway.
Databáze: OpenAIRE