Existence, uniqueness and regularity for the stochastic Ericksen-Leslie equation

Autor: Anne de Bouard, Antoine Hocquet, Andreas Prohl
Přispěvatelé: Centre de Mathématiques Appliquées - Ecole Polytechnique (CMAP), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Institut für Mathematik [Berlin], Technische Universität Berlin (TU), Mathematisches Institut [Tübingen], Eberhard Karls Universität Tübingen = Eberhard Karls University of Tuebingen
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Nonlinearity
Nonlinearity, IOP Publishing, In press, ⟨10.1088/1361-6544/ac022e⟩
ISSN: 0951-7715
1361-6544
DOI: 10.1088/1361-6544/ac022e⟩
Popis: We investigate existence and uniqueness for the stochastic liquid crystal flow driven by colored noise on the two-dimensional torus. After giving a natural uniqueness criterion, we prove local solvability in $L^p$-based spaces, for every $p>2.$ Thanks to a bootstrap principle together with a Gy��ngy-Krylov-type compactness argument, this will ultimately lead us to prove the existence of a particular class of global solutions which are partially regular, strong in the probabilistic sense, and taking values in the "critical space" $L^2\times H^1.$
53 pages
Databáze: OpenAIRE