Classification of division Zn-graded alternative algebras
Autor: | Yoji Yoshii |
---|---|
Rok vydání: | 2002 |
Předmět: |
Discrete mathematics
Pure mathematics Algebra and Number Theory Mathematics::Rings and Algebras 010102 general mathematics Non-associative algebra Killing form Kac–Moody algebra 01 natural sciences Affine Lie algebra Lie conformal algebra Adjoint representation of a Lie algebra 0103 physical sciences Freudenthal magic square 010307 mathematical physics 0101 mathematics Generalized Kac–Moody algebra Mathematics |
Zdroj: | Journal of Algebra. 256:28-50 |
ISSN: | 0021-8693 |
DOI: | 10.1016/s0021-8693(02)00022-4 |
Popis: | The octonion torus (or Cayley torus) appears as a coordinate algebra of extended affine Lie algebras of type A 2 and F 4 . A generalized version of the octonion torus, called division Z n -graded alternative algebras, is classified in this paper. Using the result, we can complete the classification of division ( A 2 , Z n ) -graded Lie algebras, up to central extensions, which are a generalization of the cores of extended affine Lie algebras of type A 2 . |
Databáze: | OpenAIRE |
Externí odkaz: |