The effect of tungstate nanoparticles on reactive oxygen species and cytotoxicity in raw 264.7 mouse monocyte macrophage cells
Autor: | Diane Schwegler-Berry, Melissa A. Badding, Stanislaus S. Wong, Jonathan M. Patete, Stephen S. Leonard, Christopher Koenigsmann, Katherine M. Dunnick |
---|---|
Rok vydání: | 2014 |
Předmět: |
Programmed cell death
DNA damage Health Toxicology and Mutagenesis Toxicology medicine.disease_cause Monocytes Article Cell Line chemistry.chemical_compound Mice Tungstate medicine Animals Particle Size Hydrogen peroxide Cytotoxicity chemistry.chemical_classification Caspase 7 Reactive oxygen species Caspase 3 Macrophages Radiochemistry Electron Spin Resonance Spectroscopy Hydrogen Peroxide Tungsten Compounds Comet assay Oxidative Stress chemistry Biophysics Nanoparticles Comet Assay Reactive Oxygen Species Oxidative stress DNA Damage |
Zdroj: | Journal of toxicology and environmental health. Part A. 77(20) |
ISSN: | 1528-7394 |
Popis: | Due to their unique size, surface area, and chemical characteristics, nanoparticles’ use in consumer products has increased. However, the toxicity of nanoparticle (NP) exposure during the manufacturing process has not been fully assessed. Tungstate NP are used in numerous products, including but not limited to scintillator detectors and fluorescent lighting. As with many NP, no apparent toxicity studies have been completed with tungstate NP. The hypothesis that tungstate NP in vitro exposure results in reactive oxygen species (ROS) formation and cytotoxicity was examined. Differences in toxicity based on tungstate NP size, shape (sphere vs. wire), and chemical characteristics were determined. RAW 264.7 mouse monocyte macrophages were exposed to tungstate NP, and ROS formation was assessed via electron spin resonance (ESR), and several assays including hydrogen peroxide, intracellular ROS, and Comet. Results showed ROS production induced by tungstate nanowire exposure, but this exposure did not result in oxidative DNA damage. Nanospheres showed neither ROS nor DNA damage following cellular exposure. Cells were exposed over 72 h to assess cytotoxicity using an MTT (tetrazolium compound) assay. Results showed that differences in cell death between wires and spheres occurred at 24 h but were minimal at both 48 and 72 h. The present results indicate that tungstate nanowires are more reactive and produce cell death within 24 h of exposure, whereas nanospheres are less reactive and did not produce cell death. Results suggest that differences in shape may affect reactivity. However, regardless of the differences in reactivity, in general both shapes produced mild ROS and resulted in minimal cell death at 48 and 72 h in RAW 264.7 cells. |
Databáze: | OpenAIRE |
Externí odkaz: |