In situ x-ray diffraction analysis of 2D crack patterning in thin films

Autor: Pierre-Olivier Renault, Damien Faurie, T. Sadat, Dominique Thiaudière, Guillaume Parry, Fatih Zighem, Pierre Godard
Přispěvatelé: Laboratoire des Sciences des Procédés et des Matériaux (LSPM), Université Paris 13 (UP13)-Institut Galilée-Université Sorbonne Paris Cité (USPC)-Centre National de la Recherche Scientifique (CNRS), Institut Pprime (PPRIME), Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS), Surface, Interfaces et MAtériaux sous Contrainte SIMAC (SIMAC), Département Physique et Mécanique des Matériaux (Département Physique et Mécanique des Matériaux), Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS)-Institut Pprime (PPRIME), Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS), Science et Ingénierie des Matériaux et Procédés (SIMaP ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2019
Předmět:
Diffraction
Digital image correlation
Cracks
Materials science
Polymers and Plastics
[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]
Mechanical properties
02 engineering and technology
Substrate (electronics)
01 natural sciences
Synchrotron
[SPI.AUTO]Engineering Sciences [physics]/Automatic
[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]
0103 physical sciences
[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]
[PHYS.MECA.BIOM]Physics [physics]/Mechanics [physics]/Biomechanics [physics.med-ph]
Composite material
Thin film
Plane stress
[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]
[PHYS.MECA.VIBR]Physics [physics]/Mechanics [physics]/Vibrations [physics.class-ph]
010302 applied physics
[SPI.FLUID]Engineering Sciences [physics]/Reactive fluid environment
[SPI.NRJ]Engineering Sciences [physics]/Electric power
Metals and Alloys
[CHIM.MATE]Chemical Sciences/Material chemistry
[PHYS.MECA.MSMECA]Physics [physics]/Mechanics [physics]/Materials and structures in mechanics [physics.class-ph]
021001 nanoscience & nanotechnology
[PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph]
Electronic
Optical and Magnetic Materials

Stress field
[SPI.ELEC]Engineering Sciences [physics]/Electromagnetism
[CHIM.POLY]Chemical Sciences/Polymers
Flexible substrates
X-ray crystallography
[PHYS.MECA.THER]Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph]
Ceramics and Composites
Deformation (engineering)
0210 nano-technology
Zdroj: Acta Materialia
Acta Materialia, Elsevier, 2019, 165, pp.177-182. ⟨10.1016/j.actamat.2018.11.040⟩
ISSN: 1359-6454
Popis: International audience; In this work, the effect of the loading path on the multicracking of Nickel thin films on Kapton® substrate was studied thanks to an experimental set-up combining controlled biaxial deformation, x-ray diffraction and digital image correlation. Samples were biaxially stretched up to 10% strain following either a single equibiaxial path or a complex one consisting of loading successively along each of the axes of the cruciform specimen. While the first path leads to a mud-crack pattern (random), the second leads to a roman-bricks one (square). Moreover, the in situ x-ray diffraction experiments show that the stress field developed in the thin film during the multicracking is clearly dependent on the loading path. By combining the study of stresses and x-ray diffraction peaks linewidth, we evidenced mechanical domains related to initiation of cracks and their multiplication for each loading path. Moreover, stress evolution in the thin film during mud-crack pattern formation is significantly smoother than in the case of roman-bricks one as represented in the plane stress space.
Databáze: OpenAIRE