Toughening induced by the formation of facets in mode I+III brittle fracture: Experiments versus a two-scale Cohesive Zone model
Autor: | M.L. Hattali, T. Cambonie, Véronique Lazarus |
---|---|
Přispěvatelé: | Fluides, automatique, systèmes thermiques (FAST), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Tribologie et Dynamique des Systèmes (LTDS), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE)-Ecole Nationale d'Ingénieurs de Saint Etienne (ENISE)-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences de la mécanique et Applications industrielles (IMSIA - UMR 9219), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF), Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE)-Ecole Nationale d'Ingénieurs de Saint Etienne-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-EDF R&D (EDF R&D), Université Paris-Saclay, CNRS, FAST, 91405 Orsay, France, Laboratoire de Tribologie et Dynamique des Systèmes - Ecole Nationale des Travaux Publiques d’Etat (LTDS-ENTPE) |
Rok vydání: | 2021 |
Předmět: |
Toughness
Materials science 02 engineering and technology 0203 mechanical engineering [SPI.MECA.MEMA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph] Factory roof pattern Composite material Elasticity (economics) ComputingMilieux_MISCELLANEOUS Microscale chemistry Critical load Mechanical Engineering [PHYS.MECA]Physics [physics]/Mechanics [physics] 021001 nanoscience & nanotechnology Condensed Matter Physics Microstructure Mode I+III Shear (sheet metal) Cohesive zone model 020303 mechanical engineering & transports [SPI.MECA.STRU]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Structural mechanics [physics.class-ph] Brittle fracture Mechanics of Materials Effective fracture toughness Fracture (geology) Tilted facets 0210 nano-technology Linear Elastic Fracture Mechanics |
Zdroj: | Journal of the Mechanics and Physics of Solids Journal of the Mechanics and Physics of Solids, 2021, 156, pp.104596. ⟨10.1016/j.jmps.2021.104596⟩ Journal of the Mechanics and Physics of Solids, Elsevier, In press, ⟨10.1016/j.jmps.2021.104596⟩ Journal of the Mechanics and Physics of Solids, Elsevier, 2021, 156, pp.104596. ⟨10.1016/j.jmps.2021.104596⟩ |
ISSN: | 0022-5096 |
Popis: | International audience; When subjected to some anti-plane shear mode III loading, segmentation of the crack front frequently occurs during propagation: even if the crack is initially planar, propagation produces facets/segments rotated toward the shear free direction. Here, we examine, both experimentally and theoretically, the effect of this microstructure on the effective macroscale brittle fracture toughness. Experiments performed on PMMA beams reveal that the critical load leading to abrupt rupture increases with mode III to mode I ratio. This apparent macroscopic toughening is usually taken into account by invoking a specific mode III toughness in addition to the mode I one. By applying thoroughfully a micro/macroscale Cohesive Zone (CZ) model that we have recently developed, we demonstrate that an additional material constant is useless here since this toughness increase can be attributed mainly to the presence of the facets at the microscale, whose geometry can be anticipated to depend on the classical mode I material constants. More precisely, two related physical mechanisms are generated due to the formation of a disconnected crack front: (i) changes in fractured surface area in comparison to a straight propagation, and (ii) crack shielding caused by the facets that reduce the effective crack opening. While the first effect is obvious to quantify, we show that the second plays an essential role but is more complex to take into account: it depends on the solution of the three-dimensional elasticity problem in presence of the facets, that is considered in the CZ model. We illustrate on the experiments how to use this approach in practice to determine the critical fracture threshold. |
Databáze: | OpenAIRE |
Externí odkaz: |