Functional and Cosmetic Outcome after Reconstruction of Isolated, Unilateral Orbital Floor Fractures (Blow-Out Fractures) with and without the Support of 3D-Printed Orbital Anatomical Models
Autor: | Marina Barba, Guido R. Sigron, Britt-Isabelle Berg, Frédérique Chammartin, Bilal Msallem, Florian M. Thieringer |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Orthodontics
Diplopia Sensory disturbance 3d printed Titanium implant business.industry Enophthalmos patient-specific implant orbital reconstruction General Medicine Article eye diseases functional outcome medicine.anatomical_structure Blow out fractures blow-out fracture Medicine medicine.symptom orbital fracture business Orbital Fracture Orbit (anatomy) printed anatomical model |
Zdroj: | Journal of Clinical Medicine, Vol 10, Iss 3509, p 3509 (2021) Journal of Clinical Medicine Volume 10 Issue 16 |
ISSN: | 2077-0383 |
Popis: | The present study aimed to analyze if a preformed “hybrid” patient-specific orbital mesh provides a more accurate reconstruction of the orbital floor and a better functional outcome than a standardized, intraoperatively adapted titanium implant. Thirty patients who had undergone surgical reconstruction for isolated, unilateral orbital floor fractures between May 2016 and November 2018 were included in this study. Of these patients, 13 were treated conventionally by intraoperative adjustment of a standardized titanium mesh based on assessing the fracture’s shape and extent. For the other 17 patients, an individual three-dimensional (3D) anatomical model of the orbit was fabricated with an in-house 3D-printer. This model was used as a template to create a so-called “hybrid” patient-specific titanium implant by preforming the titanium mesh before surgery. The functional and cosmetic outcome in terms of diplopia, enophthalmos, ocular motility, and sensory disturbance trended better when “hybrid” patient-specific titanium meshes were used but with statistically non-significant differences. The 3D-printed anatomical models mirroring the unaffected orbit did not delay the surgery’s timepoint. Nonetheless, it significantly reduced the surgery duration compared to the traditional method (58.9 (SD: 20.1) min versus 94.8 (SD: 33.0) min, p-value = 0.003). This study shows that using 3D-printed anatomical models as a supporting tool allows precise and less time-consuming orbital reconstructions with clinical benefits. |
Databáze: | OpenAIRE |
Externí odkaz: |