Universality of Rank 6 Plucker Relations and Grassmann Cone Preserving Maps

Autor: Kathryn Pedings, Amy Reiszl, Alex Kasman, T. Shiota
Jazyk: angličtina
Rok vydání: 2005
Předmět:
Popis: The Plücker relations define a projective embedding of the Grassmann variety G r ( p , n ) Gr(p,n) . We give another finite set of quadratic equations which defines the same embedding, and whose elements all have rank 6. This is achieved by constructing a certain finite set of linear maps ⋀ p k n → ⋀ 2 k 4 \bigwedge ^pk^n\to \bigwedge ^2k^4 , and pulling back the unique Plücker relation on ⋀ 2 k 4 \bigwedge ^2k^4 . We also give a quadratic equation depending on ( p + 2 ) (p+2) parameters having the same properties.
Databáze: OpenAIRE