Universality of Rank 6 Plucker Relations and Grassmann Cone Preserving Maps
Autor: | Kathryn Pedings, Amy Reiszl, Alex Kasman, T. Shiota |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2005 |
Předmět: |
Applied Mathematics
General Mathematics Projective embedding FOS: Physical sciences Mathematical Physics (math-ph) 14M15 15A75 Universality (dynamical systems) Combinatorics Mathematics - Algebraic Geometry Quadratic equation FOS: Mathematics Embedding Plucker Finite set Algebraic Geometry (math.AG) Mathematical Physics Mathematics |
Popis: | The Plücker relations define a projective embedding of the Grassmann variety G r ( p , n ) Gr(p,n) . We give another finite set of quadratic equations which defines the same embedding, and whose elements all have rank 6. This is achieved by constructing a certain finite set of linear maps ⋀ p k n → ⋀ 2 k 4 \bigwedge ^pk^n\to \bigwedge ^2k^4 , and pulling back the unique Plücker relation on ⋀ 2 k 4 \bigwedge ^2k^4 . We also give a quadratic equation depending on ( p + 2 ) (p+2) parameters having the same properties. |
Databáze: | OpenAIRE |
Externí odkaz: |