Effect of Martensitic Transformation and Grain Size on the Surface Roughening Behavior in SUS 304 and SUS 316 Thin Metal Foils
Autor: | Abdul Aziz, Ming Yang |
---|---|
Rok vydání: | 2020 |
Předmět: |
010302 applied physics
Austenite Materials science Misorientation coarse grain SEM-EBSD strain level 02 engineering and technology 021001 nanoscience & nanotechnology 01 natural sciences Grain size surface roughening Diffusionless transformation Martensite 0103 physical sciences Volume fraction Deformation (engineering) Composite material fine grain 0210 nano-technology martensitic phase transformation (MPT) Tensile testing |
Zdroj: | Eng Volume 1 Issue 2 Pages 11-182 |
ISSN: | 2673-4117 |
DOI: | 10.3390/eng1020011 |
Popis: | The surface roughening and martensitic phase transformation (MPT) of SUS 304 and SUS 316 were studied through two experiments: a uniaxial tensile stress test, repeated for five cycles, and an Scanning Electron Microscope&ndash Electron Backscaterr Diffraction (SEM-EBSD) investigation. The MPT and martensitic volume fraction (Mf) were evaluated following the tensile test. The correlation between MPT, Mf, and surface roughening behavior was investigated. The experiment showed that an increase in the strain level from 0.4% to 1% increased the MPT and Mf, which transformed from a metastable austenitic phase in SUS 304. The increased strain level increased the surface roughening for various grain sizes (Dg), from fine grain (Dg < 3 &mu m) to coarse grain (Dg &ge m). SUS 304 and SUS 316 are used so that the surface roughening mechanism between SUS 304 and SUS 316, with different phase conditions and at a similar Dg, can be determined. The results showed that the surface roughening increased for both fine and coarse grain at strain levels of 0.4% and 1% however, a larger increase of surface roughening was obtained for coarse grain. In coarse grain, surface roughening increased significantly not only with a low MPT, but also with a low grain deformation. In coarse grain, the surface roughening increased proportionally to the strain level (&epsilon p) because of the low MPT and weak grain. In fine grain, the surface roughening did not increase proportionally to the &epsilon p because of the high MPT, which increased the grain strength in SUS 304. In the fine grain of SUS 304, the increase of surface roughening was nearly the same both at strain levels of 0.4% and 1%, because the MPT and Mf were nearly the same. The surface roughening with the same &epsilon p and almost the same Dg in SUS 304 and SUS 316 fine grain was nearly the same, because the grain deformation almost produced the same relative inclination between neighboring grains in the initial state direction to the surface. The inter-grain movement changed the grain orientation. Based on kernel average misorientation (KAM) mapping, the local grain misorientation in SUS 304 was higher than that in SUS 316. This indicated that the fine-grain SUS 304 is harder than the fine-grain SUS 316. There is no MPT in SUS 316 because of the higher austenitic phase, which is affected by the austenitic former, such as Ni. |
Databáze: | OpenAIRE |
Externí odkaz: |