Filled Julia Sets of Chebyshev Polynomials
Autor: | Carsten Lunde Petersen, Christian Henriksen, Jacob S. Christiansen, Henrik L. Pedersen |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Chebyshev polynomials
Julia set Dynamical Systems (math.DS) Green’s function 01 natural sciences Measure (mathematics) Combinatorics symbols.namesake 0103 physical sciences FOS: Mathematics Complex Variables (math.CV) Mathematics - Dynamical Systems 0101 mathematics Mathematics Sequence Mathematics - Complex Variables 010102 general mathematics Hausdorff space 42C05 37F10 31A15 Compact space Differential geometry Fourier analysis symbols 010307 mathematical physics Geometry and Topology |
Zdroj: | Christiansen, J S, Henriksen, C, Pedersen, H L & Petersen, C L 2021, ' Filled Julia Sets of Chebyshev Polynomials ', Journal of Geometric Analysis . https://doi.org/10.1007/s12220-021-00716-y Christiansen, J S, Henriksen, C, Pedersen, H L & Petersen, C L 2021, ' Filled Julia Sets of Chebyshev Polynomials ', Journal of Geometric Analysis, vol. 31, pp. 12250–12263 . https://doi.org/10.1007/s12220-021-00716-y |
DOI: | 10.1007/s12220-021-00716-y |
Popis: | We study the possible Hausdorff limits of the Julia sets and filled Julia sets of subsequences of the sequence of dual Chebyshev polynomials of a non-polar compact set K in C and compare such limits to K. Moreover, we prove that the measures of maximal entropy for the sequence of dual Chebyshev polynomials of K converges weak* to the equilibrium measure on K. 1 Figure |
Databáze: | OpenAIRE |
Externí odkaz: |