Filled Julia Sets of Chebyshev Polynomials

Autor: Carsten Lunde Petersen, Christian Henriksen, Jacob S. Christiansen, Henrik L. Pedersen
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Christiansen, J S, Henriksen, C, Pedersen, H L & Petersen, C L 2021, ' Filled Julia Sets of Chebyshev Polynomials ', Journal of Geometric Analysis . https://doi.org/10.1007/s12220-021-00716-y
Christiansen, J S, Henriksen, C, Pedersen, H L & Petersen, C L 2021, ' Filled Julia Sets of Chebyshev Polynomials ', Journal of Geometric Analysis, vol. 31, pp. 12250–12263 . https://doi.org/10.1007/s12220-021-00716-y
DOI: 10.1007/s12220-021-00716-y
Popis: We study the possible Hausdorff limits of the Julia sets and filled Julia sets of subsequences of the sequence of dual Chebyshev polynomials of a non-polar compact set K in C and compare such limits to K. Moreover, we prove that the measures of maximal entropy for the sequence of dual Chebyshev polynomials of K converges weak* to the equilibrium measure on K.
1 Figure
Databáze: OpenAIRE