Gelfand models and Robinson-Schensted correspondence

Autor: Roberta Fulci, Fabrizio Caselli
Přispěvatelé: F. Caselli, R. Fulci
Rok vydání: 2011
Předmět:
DOI: 10.48550/arxiv.1101.5021
Popis: In [F. Caselli, Involutory reflection groups and their models, J. Algebra 24 (2010), 370--393] there is constructed a uniform Gelfand model for all non-exceptional irreducible complex reflection groups which are involutory. Such model can be naturally decomposed into the direct sum of submodules indexed by $S_n$-conjugacy classes, and we present here a general result that relates the irreducible decomposition of these submodules with the projective Robinson-Schensted correspondence. This description also reflects in a very explicit way the existence of split representations for these groups.
Comment: 23 pages
Databáze: OpenAIRE