Stochastic dynamics for group field theories

Autor: Vincent Lahoche, Dine Ousmane Samary
Přispěvatelé: HEP, INSPIRE, Département Intelligence Ambiante et Systèmes Interactifs (DIASI), Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
Rok vydání: 2023
Předmět:
Zdroj: Phys.Rev.D
Phys.Rev.D, 2023, 107 (8), pp.086009. ⟨10.1103/PhysRevD.107.086009⟩
ISSN: 2470-0029
2470-0010
DOI: 10.1103/physrevd.107.086009
Popis: Phase transitions with spontaneous symmetry breaking are expected for group field theories as a basic feature of the geometogenesis scenario. The following paper aims to investigate the equilibrium phase for group field theory by using the ergodic hypothesis on which the Gibbs-Boltzmann distributions must break down. The breaking of the ergodicity can be considered dynamically, by introducing a fictitious time inducing a stochastic process described through a Langevin equation, from which the randomness of the tensor field will be a consequence. This type of equation is considered particularly for complex just-renormalizable Abelian model of rank $d=5$, and we study some of their properties by using a renormalization group considering a coarse-graining both in time and space.
Comment: 76 pages, 18 figures
Databáze: OpenAIRE