Structural analysis of adventitial collagen to feature aging and aneurysm formation in human aorta
Autor: | Tetsuro Miyata, Juno Deguchi, Tomomasa Shimanuki, Go Urabe, Yasutomo Nishimori, Katsuyuki Hoshina |
---|---|
Rok vydání: | 2014 |
Předmět: |
0301 basic medicine
Adult Male Pathology medicine.medical_specialty Adventitia Aging Protein Conformation Fibrillar Collagens 030204 cardiovascular system & hematology Inferior mesenteric artery 03 medical and health sciences Aortic aneurysm 0302 clinical medicine Risk Factors medicine.artery Tensile Strength medicine Humans Aorta Abdominal Aneurysm formation Aged Human aorta Aged 80 and over Aorta business.industry Abdominal aorta Age Factors Anatomy Middle Aged medicine.disease Abdominal aortic aneurysm 030104 developmental biology medicine.anatomical_structure Case-Control Studies cardiovascular system Microscopy Electron Scanning Surgery Microscopy Polarization Cardiology and Cardiovascular Medicine business Aortic Aneurysm Abdominal |
Zdroj: | Journal of vascular surgery. 63(5) |
ISSN: | 1097-6809 |
Popis: | Objective Adventitial collagen structure provides the aorta with tensile strength. Like other collagen-rich tissues, it can be affected by internal factors including aging and location. We determined whether the structural characteristics of human aortic adventitial collagen change with aging, location, and aneurysm formation. Methods Nonatherosclerotic nonaneurysmal (NANA) human abdominal aortas were collected from 15 individuals who had died of noncardiovascular diseases ( 60 years old, NANA old, n = 5). The architecture of adventitial collagen in the aortas was assessed by scanning electron microscopy, and fiber orientation was assessed by polarized microscopy with two-dimensional fast Fourier transform. We then analyzed retardation as an anisotropic property of adventitial collagen by polarized light microscopy. The orientation and retardation of NANA aortas were compared with those of abdominal aortic specimens from patients who were surgically treated for abdominal aortic aneurysm (AAA) (>60 years old, n = 11). Results Adventitial collagen of the abdominal aortas on scanning electron microscopy images appeared as wavy, ropy fibers in aortas from young individuals (NANA young, n = 5) and were essentially flattened in those from older patents (NANA old, n = 5) and from those with AAA. Collagen fibers were thicker but sparser in the adventitia of aortas with AAA. Orientation maintained in the collagen fibers of NANA aortas (n = 15) on two-dimensional fast Fourier transform analysis was unrelated to either location or age and did not differ between NANA aortas and those with AAA. However, collagen fibrils in NANA aortas (n = 15) were significantly less retarded only at the level of the inferior mesenteric artery compared with other aortic locations. In addition, retardation was significantly reduced in abdominal aortas with AAA at the level of the inferior mesenteric artery. Conclusions The basic structure of adventitial collagen fiber was maintained in abdominal aortas regardless of location or age. Because the molecular structure at the subfibril level changed at abdominal aorta and enhanced in aortas with AAA, alterations in the molecular structure of adventitial collagen might be associated with aneurysmal formation. |
Databáze: | OpenAIRE |
Externí odkaz: |