Low-Carbon Concrete Based on Binary Biomass Ash–Silica Fume Binder to Produce Eco-Friendly Paving Blocks

Autor: Richard Rodrigues Barreto, Augusto Cesar da Silva Bezerra, André Henrique Campos Teixeira, Paulo Roberto Ribeiro Soares Junior, Thiago Henrique da Silva
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Materials
Volume 13
Issue 7
Materials, Vol 13, Iss 1534, p 1534 (2020)
ISSN: 1996-1944
DOI: 10.3390/ma13071534
Popis: The civil construction industry consumes huge amounts of raw materials and energy, especially infrastructure. Thus, the use of eco-friendly materials is indispensable to promote sustainable development. In this context, the present work investigated low-carbon concrete to produce eco-friendly paving blocks. The binder was defined according to two approaches. In the first, a binary binder developed with eucalyptus biomass ash (EBA) and silica fume (SF) was used, in total replacement for Portland cement. In the second, the mixture of residues was used as a precursor in alkali-activation reactions, forming alkali-activated binder. The experimental approach was carried out using five different mixtures, obtained by varying the amount of water or sodium hydroxide solution. The characterization of this new material was carried out using compressive strength, expandability, water absorption, deep abrasion, microstructural investigation, and organic matter degradation potential. The results showed that the EBA-SF system has a performance compatible with Portland cement when used as an alternative binder, in addition to functioning as a precursor to alkali-activated concrete. The blocks produced degraded organic matter, and this degradation is more intense with the incidence of UV. In this way, the EBA-SF binder can be successfully used for the manufacture of ecological paving blocks with low carbon emissions.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje